

FPGA-Based Acoustic Feedback Suppression: A Review of Algorithms, Implementations, and Future Directions

*W. S. C. Rodrigo, Udara. S. P. R. Arachchige, W. C. Nirmal, W. S. Kaveesha, R. A. P. Buddhika

Faculty of Engineering, NSBM Green University, Homagama, Sri Lanka

*sandul.r@nsbm.ac.lk

Received: 05 October 2025; Revised: 15 December 2025; Accepted: 22 December 2025; Available online: 10 January 2026

Abstract - Sonar Acoustic feedback remains a critical limitation in sound reinforcement and communication systems, particularly in environments where microphones and loudspeakers operate close proximity. Traditional suppression methods such as notch filtering, phase shifting, and frequency shifting provide partial relief but often introduce latency, tonal coloration, and reduced audio quality. Recent work has increasingly explored adaptive approaches and hardware acceleration to address these limitations. In parallel, Field-Programmable Gate Arrays (FPGAs) have emerged as attractive platforms for real-time audio processing due to their parallelism, deterministic timing, and flexibility. This paper presents a comprehensive review of algorithms and implementation strategies for acoustic feedback suppression with emphasis on FPGA-based realization. Traditional and adaptive algorithms, including LMS-based feedback cancellation and transform-domain methods, are examined in terms of performance trade-offs, hardware cost, and suitability for real-time deployment. The review also analyzes practical challenges such as clock synchronization, resource utilization, precision management, and system scalability. A synthesis of the literature reveals key research gaps, including the scarcity of complete FPGA implementations, limited consideration of multi-microphone systems, minimal real-time testing, and lack of comparative benchmarking across algorithms on common hardware platforms. To address these gaps, the paper proposes a review-driven design perspective focusing on adaptive FPGA architectures, resource-optimized LMS variants, multi-path modeling, and systematic real-world validation. The findings demonstrate that FPGAs hold significant potential as enabling platforms for next-generation, low-latency acoustic feedback suppression systems capable of moving from laboratory prototypes to practical deployment.

Index Terms - Acoustic feedback suppression, FPGA, adaptive filtering, LMS, real-time DSP, audio systems

1. INTRODUCTION

Acoustic feedback - often heard as a high-pitched “howling” or whistling tone occurs when sound from a loudspeaker is re-captured by a microphone and re-amplified in a closed loop. As the feedback loop repeatedly reinforces certain frequencies, the system becomes unstable, resulting in distortion, discomfort, and potential equipment damage. The problem is especially pronounced in live sound reinforcement, hearing aids, conference rooms, lecture halls, and public-address systems, where microphones and loudspeakers operate in proximity. Beyond the audible annoyance, feedback fundamentally limits the maximum usable gain of an audio system and reduces speech intelligibility, making its suppression a critical requirement in

practical sound applications.[1]

Over several decades, researchers and engineers have developed a wide range of feedback-mitigation techniques. Traditional approaches such as notch filtering, phase shifting, and frequency shifting attempt to attenuate or decorrelate problematic frequencies. More advanced solutions incorporate adaptive filtering and model-based estimation to predict and cancel feedback paths dynamically. While these strategies can be effective, they often introduce trade-offs including signal coloration, loss of natural sound quality, stability issues, or increased latency. These challenges become more severe in environments with multiple microphones, time-varying acoustics, and changing system configurations—scenarios that are increasingly common in modern audio systems.[2], [3]

Conventional digital signal processors (DSPs) and microcontrollers are frequently used to implement feedback-suppression algorithms. However, their inherently sequential processing architecture can make it difficult to satisfy simultaneous requirements for low latency, high throughput, and real-time adaptability. As audio systems evolve toward higher sampling rates, multichannel layouts, and more sophisticated control logic, computational demands continue to rise, creating the need for hardware platforms that can execute complex algorithms without compromising responsiveness.[4], [5]

Field-Programmable Gate Arrays (FPGAs) have therefore gained increasing attention as an attractive alternative for audio processing tasks. FPGAs provide a reconfigurable hardware platform capable of true parallel processing, deterministic timing behavior, and tight integration between control and signal-processing blocks. Instead of executing operations sequentially, FPGAs allow designers to construct dedicated data paths that process multiple audio streams simultaneously, significantly reducing processing latency. Their flexibility also enables customization of arithmetic precision, resource allocation, and pipeline depth to suit specific algorithms and system constraints. These characteristics make FPGAs particularly well suited for real-time acoustic feedback suppression, especially in systems where multiple inputs, low power consumption, and scalability are required.[6]

Despite these advantages, the application of FPGA technology to acoustic feedback suppression remains relatively underexplored compared with software-based implementations.[7] Much of the existing literature focuses either on algorithmic development or on hardware prototyping, but rarely on how specific feedback-suppression methods translate effectively into FPGA architectures. There is limited consolidated discussion on design trade-offs, resource utilization, latency considerations, and comparative performance across algorithms when implemented on hardware.[8]

For these reasons, a comprehensive review is both timely and necessary. This paper examines existing approaches to acoustic feedback suppression with particular emphasis on their realization in FPGA-based systems. The review highlights fundamental techniques, implementation challenges, and performance characteristics while identifying research gaps and emerging opportunities. By synthesizing findings across disciplines, including audio engineering, adaptive signal processing, and reconfigurable computing this work aims to provide guidance for future developments in efficient, scalable, and low-latency feedback-suppression solutions. development.

2. BACKGROUND

2.1. Acoustic Feedback Mechanism

Acoustic feedback occurs when part of the sound produced by a loudspeaker is picked up again by a nearby

microphone, re-amplified, and reintroduced into the system.[9] This creates a closed feedback loop in which the signal repeatedly circulates through the amplification path. When the loop gain at certain frequencies exceeds unity and the phase conditions align, those frequencies become self-sustaining, resulting in the familiar high-pitched howling or whistling tone. Beyond degrading audio quality, persistent feedback can damage speakers, reduce speech intelligibility, and limit how much gain a system can safely apply. Managing feedback is therefore essential for stable operation in public-address systems, hearing aids, conference setups, and live sound reinforcement.

2.2. Basic Noise-Cancellation Concepts

Noise cancellation techniques aim to reduce unwanted signals while preserving the desired audio content. In conventional systems, filtering methods such as notch filters or band-pass filters remove energy at problematic frequencies. However, static filters cannot adapt to environments where noise characteristics change over time. More advanced approaches use reference-based cancellation: a reference signal that is correlated with the unwanted noise is processed to generate an “anti-noise” signal, which is then subtracted from the contaminated audio. The effectiveness of this strategy depends heavily on how accurately the system models the noise path and how quickly it can react to variations.[10]

2.3. Adaptive Filtering

Adaptive filters extend traditional filtering by continuously adjusting their coefficients in real time to minimize the error between the desired signal and the output. Instead of relying on fixed parameters, they learn the statistical relationship between the reference noise and the recorded signal as the system operates. Algorithms such as the Least Mean Squares (LMS) and its variants update the filter weights iteratively, allowing the filter to track changes in the acoustic environment, microphone placement, and system gain. This makes adaptive filtering particularly suitable for acoustic feedback suppression, where conditions are highly dynamic and static filters often underperform.[11]

3. REVIEW OF EXISTING FEEDBACK SUPPRESSION ALGORITHMS

Feedback suppression strategies can generally be grouped into traditional signal-processing techniques and adaptive algorithms. Traditional approaches focus on attenuating or altering the frequencies most prone to feedback, while adaptive approaches model the feedback path and cancel it dynamically. This section reviews the main methods used in practice, emphasizing their advantages and limitations.[12]

3.1. Traditional Methods

3.1.1. NOTCH FILTERS

Notch filters are among the earliest and most widely implemented solutions. They insert narrow attenuation bands at frequencies where feedback emerges, thereby suppressing oscillation while preserving most of the spectrum. Their main benefits include simplicity, robustness, and low computational cost; they operate effectively in systems where feedback consistently occurs near predictable resonances.[13], [14]

However, notch filters inevitably remove portions of the desired signal as well. Multiple notches can introduce audible coloration, producing a thin or hollow sound. A further limitation is that conventional notches are typically static, meaning that frequency drifts caused by environmental changes may no longer be addressed. Automatic notch systems exist but can react slowly and occasionally mistake musical harmonics for feedback tones.[15]

3.1.2. PHASE SHIFTING

Phase-shifting techniques introduce small phase adjustments to disrupt the constructive loop conditions responsible for feedback. Because they do not depend on precise frequency detection, they are attractive in terms of simplicity and implementation effort.[16]

Yet phase shifting does not remove feedback energy; it only redistributes it. Listeners may perceive chorus-like artifacts, and at higher gains the system can still slip into oscillation. Consequently, phase shifting is often viewed as a supportive, rather than primary, feedback-control mechanism.[17]

3.1.3. FREQUENCY SHIFTING

Frequency shifting slightly offsets the signal spectrum, breaking correlation between microphone and loudspeaker signals. This method can yield noticeable increases in stable gain in speech-oriented systems and works well across diverse rooms.[18], [19]

The cost is perceptual quality. Speech can sound metallic, and musical material suffers strongly. As with phase shifting, extreme gain ultimately overwhelms the effect, limiting its role in high-fidelity audio applications.

3.2. Adaptive Algorithms

Unlike traditional suppression methods, **adaptive algorithms** continuously estimate the feedback path and attempt to cancel it before oscillation develops. This makes them more suitable for environments with changing acoustics.

3.2.1. LEAST MEAN SQUARES (LMS) ALGORITHM

The Least Mean Squares (LMS) algorithm adjusts the coefficients of an FIR filter to minimize the difference between the microphone signal and its predicted value. Its strengths include low computational demand, stable behavior, and suitability for real-time hardware. LMS adapts gradually to slow changes such as microphone movement or audience presence.[20]

Its primary limitation is sensitivity to the learning rate and reduced effectiveness in highly tonal conditions, where convergence may stall.

3.2.2. NORMALIZED LMS (NLMS)

NLMS compensates for LMS limitations by scaling the update step with input power. It converges more rapidly and consistently, especially when signal amplitudes fluctuate. Nevertheless, it introduces slightly higher computation and can still struggle in strongly tonal environments.[21], [22]

3.2.3. ADAPTIVE FEEDBACK CANCELLATION (AFC)

AFC systems explicitly estimate the loudspeaker-to-microphone transfer path and generate an opposing signal to suppress feedback. They generally preserve audio quality better than traditional filters and can permit higher usable gain. However, they are vulnerable to bias if parts of the desired signal leak into the adaptive model, and they require greater algorithmic and hardware sophistication.[23], [24]

3.2.4. OTHER VARIANTS AND HYBRID APPROACHES

More advanced methods including Recursive Least Squares (RLS) and hybrid models combining adaptive filters with selective notches offer faster adaptation and added robustness. Their drawback is complexity, higher resource consumption, and more challenging parameter tuning.[25], [26]

3.3. Summary Perspective

Overall, development trends show a shift from static suppression toward adaptive, model-driven approaches. Traditional techniques remain useful in fixed or low-cost deployments but struggle in dynamically changing environments. Adaptive algorithms provide superior transparency and flexibility, although they introduce challenges in convergence control and computational load. These factors help explain the growing interest in FPGA-based implementations explored later in this review, where parallelism and deterministic timing can support the demands of advanced feedback-suppression strategies.

4. FPGA-BASED IMPLEMENTATIONS

Field-Programmable Gate Arrays (FPGAs) have emerged as a compelling hardware platform for real-time audio processing and feedback suppression. Unlike conventional processors, FPGAs allow designers to implement dedicated digital signal-processing pipelines directly in hardware. This provides parallel execution, deterministic timing, and extremely low latency, all of which are essential when feedback must be controlled before it becomes audible. Two major FPGA-based approaches dominate literature: transform-domain methods, particularly wavelet-packet analysis, and adaptive filtering architectures such as LMS-based cancellers.

4.1. Wavelet-Packet Transform Approaches

Wavelet-packet FPGA implementations decompose the input signal into multiple frequency sub-bands using a tree of digital filters. Feedback-dominant bands are identified by monitoring their energy levels, reconstructed, and selectively removed from the original signal. Because the transform operates in narrow frequency regions, only problematic components are suppressed, preserving most of the audio spectrum.[27], [28]

The strength of this approach lies in its spectral selectivity and ability to reduce coloration compared with static notch filters. At the same time, the design demands significant computational resources: decomposition, reconstruction, and threshold-decision logic require multiple multipliers, buffers, and control structures. Although pipelining mitigates latency, overall complexity and tuning effort remain higher than in simpler feedback-suppression systems. As a result, wavelet-based FPGA designs are best suited to applications prioritizing sound fidelity and controlled suppression.

4.2. LMS-Based Adaptive Filter Implementations

A more widely adopted strategy on FPGA platforms uses adaptive filtering, particularly the Least Mean Squares (LMS) algorithm. Here, an FIR filter models the acoustic feedback path, updating its coefficients every sample to minimize the error between the microphone signal and an estimated feedback replica. The FPGA's DSP slices efficiently implement the multiply-accumulate operations needed for coefficient updates and filtering.[29], [30]

LMS-based systems offer a strong balance of simplicity, robustness, and real-time performance. They adapt

naturally to changes such as microphone movement, audience presence, or varying amplification levels. Filter size and precision can be scaled to match available FPGA resources, and latency can be reduced to only a few clock cycles. Normalized variants (NLMS) further improve convergence when signal amplitudes vary.[31], [32]

However, performance is sensitive to learning-rate tuning, and convergence slows in highly tonal signals. Moreover, the algorithm assumes largely linear behavior, whereas real loudspeaker–room systems often contain nonlinear effects that reduce cancellation accuracy. Even so, LMS architecture remains among the most practical for FPGA-based feedback suppression due to their predictable resource usage and stable operation.

4.3. Advantages of FPGA Architectures

Across implementations, several advantages are consistent:

- Ultra-low latency: pipelined hardware eliminates instruction overhead.
- True parallelism: multiple channels and filters operate simultaneously.
- Deterministic timing: no operating-system jitter or scheduling delays.
- Configurable precision: designers optimize resource usage and accuracy.

These properties make FPGAs particularly appealing for live-sound, multi-microphone, and embedded audio applications where responsiveness is critical.[33]

4.4. Implementation Challenges

Despite these benefits, practical challenges persist. FPGA-based audio systems require careful clock generation and synchronization with codecs; errors can introduce jitter or desynchronization. More advanced algorithms can consume significant logic, memory, and DSP resources, especially in multi-channel systems. Development complexity is also higher than for software implementations, and debugging adaptive behavior on hardware often requires specialized tools and careful simulation.

4.5. Summary

Overall, FPGA implementations reflect a shift from static filtering toward adaptive and selective suppression strategies capable of operating in true real time. Wavelet-packet approaches offer fine frequency control at the cost of complexity, while LMS-based designs provide a practical compromise between performance and implementation effort. The literature shows that, when designed carefully, FPGAs can meaningfully extend gain margins and reduce audible feedback without sacrificing sound quality positioning them as a key enabling technology for next-generation feedback-suppression systems.

5. RESEARCH GAP AND PROPOSED SOLUTION

Although a range of acoustic feedback suppression techniques has been explored in the literature, several important gaps remain particularly when considering real-time FPGA implementation. Most prior work focuses on algorithm development using simulations or DSP-based platforms, while comparatively few studies deploy complete feedback-suppression systems on FPGAs. As a result, the practical implications of hardware constraints, such as fixed-point precision, resource utilization, and timing closure, are not well documented.

Another significant limitation is that existing approaches typically assume a single-microphone

configuration, even though modern public-address and live-sound environments commonly rely on multiple microphones operating simultaneously. Multi-path feedback interactions are therefore overlooked, limiting the scalability of current designs.

Moreover, many reported implementations lack extensive real-time experimental evaluation. Performance is often demonstrated using prerecorded datasets or controlled laboratory conditions. Such setups fail to capture dynamic acoustic changes, codec synchronization issues, and latency effects that appear during real deployment. Finally, there is limited comparative analysis across algorithms implemented on the same FPGA platform. This makes it difficult to determine which method best balances suppression effectiveness with hardware cost and latency.

To address these gaps, this paper proposes a review-driven design perspective focused on FPGA-based feedback suppression architectures. The proposed direction emphasizes:

- (1) implementing adaptive algorithms directly on FPGA hardware,
- (2) extending designs to support multi-microphone feedback paths,
- (3) optimizing LMS-type architectures for low-resource devices, and
- (4) validating performance through comprehensive real-time testing frameworks.

By synthesizing existing research and aligning it with practical hardware considerations, this review highlights pathways toward scalable, low-latency, and implementation-aware feedback suppression systems that can move from laboratory prototypes to reliable field deployments.

6. CONCLUSION

This review examined current strategies for acoustic feedback suppression with particular emphasis on their translation to FPGA-based implementations. Traditional suppression techniques—while simple and widely used struggle to maintain audio quality and stability in dynamic environments. Adaptive approaches provide improved transparency and responsiveness, but their computational demands and design complexity have limited widespread hardware deployment. FPGAs offer a compelling solution by enabling true parallel processing, deterministic latency, and configurable precision. The literature shows that algorithms such as LMS-based adaptive cancellation and wavelet-packet techniques can be mapped effectively onto FPGA architectures, providing meaningful increases in usable gain with reduced coloration. At the same time, important challenges persist, including resource constraints, synchronization issues with audio codecs, algorithm tuning, and limited availability of standardized testing frameworks. The review identified several gaps that must be addressed before FPGA-based feedback suppression becomes commonplace: the scarcity of full system implementations, a lack of support for multi-microphone scenarios, minimal real-time evaluation, and limited cross-algorithm comparisons on consistent hardware platforms. Addressing these gaps will require tighter integration of algorithm design and hardware architecture, along with systematic benchmarking in realistic acoustic environments. Overall, the evidence suggests that FPGAs are not merely an implementation option but a key enabler for scalable, low-latency feedback suppression. By combining adaptive algorithms, hardware-aware optimization, and rigorous validation, future systems can deliver reliable performance suitable for live sound, communication, and embedded audio applications.

7. REFERENCES

- [1] C. Zheng, M. Wang, X. Li, and B. C. J. Moore, “A deep learning solution to the marginal stability problems of acoustic feedback systems for hearing aids,” *J Acoust Soc Am*, vol. 152, no. 6, pp. 3616–3634, Dec. 2022, doi: 10.1121/10.0016589.
- [2] B. Bispo and D. Freitas, “Evaluation of Acoustic Feedback Cancellation Methods with Multiple Feedback Paths,” in *Proceedings of the 11th International Conference on Signal Processing and Multimedia Applications*, SCITEPRESS - Science and and Technology Publications, 2014, pp. 127–133. doi: 10.5220/0005068201270133.
- [3] M. Guo and B. Kuenzle, “On the periodically time-varying bias in adaptive feedback cancellation systems with frequency shifting,” in *2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, IEEE, Mar. 2016, pp. 539–543. doi: 10.1109/ICASSP.2016.7471733.
- [4] A. McPherson, “Bela: An embedded platform for low-latency feedback control of sound,” *J Acoust Soc Am*, vol. 141, no. 5_Supplement, pp. 3618–3618, May 2017, doi: 10.1121/1.4987761.
- [5] A. Klemd, M. Eckert, B. Klauer, J. Hanselka, and Jd. Sachau, “A Parameterizable Feedback FxLMS Architecture for FPGA Platforms,” in *Proceedings of the 10th International Symposium on Highly-Efficient Accelerators and Reconfigurable Technologies*, New York, NY, USA: ACM, Jun. 2019, pp. 1–4. doi: 10.1145/3337801.3337802.
- [6] B. Da Silva, A. Braeken, and A. Touhafi, “FPGA-Based Architectures for Acoustic Beamforming with Microphone Arrays: Trends, Challenges and Research Opportunities,” *Computers*, vol. 7, no. 3, p. 41, Aug. 2018, doi: 10.3390/computers7030041.
- [7] B. Da Silva, A. Braeken, and A. Touhafi, “FPGA-Based Architectures for Acoustic Beamforming with Microphone Arrays: Trends, Challenges and Research Opportunities,” *Computers*, vol. 7, no. 3, p. 41, Aug. 2018, doi: 10.3390/computers7030041.
- [8] M. Vaithianathan, S. Udkar, D. Roy, M. Reddy, and S. Rajasekaran, “FPGA Prototyping of DSP Algorithms for Wireless Communication Systems,” in *2024 International Conference on Sustainable Communication Networks and Application (ICSCNA)*, IEEE, Dec. 2024, pp. 231–236. doi: 10.1109/ICSCNA63714.2024.10864253.
- [9] H. Schepker and S. Doclo, “Active Feedback Suppression for Hearing Devices Exploiting Multiple Loudspeakers,” in *2019 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)*, IEEE, Oct. 2019, pp. 60–64. doi: 10.1109/WASPAA.2019.8937187.
- [10] R. Chandrayan, “An Overview of Noise Cancellation Techniques,” *INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT*, vol. 08, no. 12, pp. 1–7, Dec. 2024, doi: 10.55041/IJSREM39431.
- [11] A. Deb, A. Kar, and M. Chandra, “A technical review on adaptive algorithms for acoustic echo cancellation,” in *2014 International Conference on Communication and Signal Processing*, IEEE, Apr. 2014, pp. 041–045. doi: 10.1109/ICCSP.2014.6949795.
- [12] S. Hashemgeloogerdi and M. F. Bocko, “Inherently Stable Weighted Least-Squares Estimation of Common Acoustical Poles With the Application in Feedback Path Modeling Utilizing a Kautz Filter,”

IEEE Signal Process Lett, vol. 25, no. 3, pp. 368–372, Mar. 2018, doi: 10.1109/LSP.2017.2785355.

- [13] S.-C. Pei, B.-Y. Guo, and W.-Y. Lu, “Narrowband Notch Filter Using Feedback Structure Tips & Tricks,” *IEEE Signal Process Mag*, vol. 33, no. 3, pp. 115–118, May 2016, doi: 10.1109/MSP.2016.2531578.
- [14] G. Borque Gallego, L. Rossini, T. Achtnich, D. M. Araujo, and Y. Perriard, “Novel Generalized Notch Filter for Harmonic Vibration Suppression in Magnetic Bearing Systems,” *IEEE Trans Ind Appl*, vol. 57, no. 6, pp. 6977–6987, Nov. 2021, doi: 10.1109/TIA.2021.3062587.
- [15] T. van Waterschoot and M. Moonen, “Comparative Evaluation of Howling Detection Criteria in Notch-Filter-Based Howling Suppression,” *Journal of the Audio Engineering Society*, vol. 58, no. 11, pp. 923–940, Dec. 2010.
- [16] E. Thuillier, O. Lähdeoja, and V. Välimäki, “Feedback Control in an Actuated Acoustic Guitar using Frequency Shifting,” *Journal of the Audio Engineering Society*, vol. 67, no. 6, pp. 373–381, Jun. 2019, doi: 10.17743/jaes.2019.0013.
- [17] J. C. Estrada, J. A. Quiroga, and M. Servin, “The general theory of phase shifting algorithms,” *Optics Express*, Vol. 17, Issue 24, pp. 21867-21881, vol. 17, no. 24, pp. 21867–21881, Nov. 2009, doi: 10.1364/OE.17.021867.
- [18] C. Zheng, C. Hofmann, X. Li, and W. Kellermann, “Analysis of Additional Stable Gain by Frequency Shifting for Acoustic Feedback Suppression using Statistical Room Acoustics,” *IEEE Signal Process Lett*, vol. 23, no. 1, pp. 159–163, Jan. 2016, doi: 10.1109/LSP.2015.2507205.
- [19] M. Guo and B. Kuenzle, “On the periodically time-varying bias in adaptive feedback cancellation systems with frequency shifting,” in *2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, IEEE, Mar. 2016, pp. 539–543. doi: 10.1109/ICASSP.2016.7471733.
- [20] A. K. Subudhi, B. Mishra, and M. N. Mohanty, “VLSI Design and Implementation for Adaptive Filter using LMS Algorithm,” *International Journal of Computer and Communication Technology*, pp. 297–301, Oct. 2012, doi: 10.47893/IJCCT.2012.1160.
- [21] E. Eweda, “Comparison of LMS and NLMS adaptive filters with a non-stationary input,” in *2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers*, IEEE, Nov. 2010, pp. 1630–1634. doi: 10.1109/ACSSC.2010.5757814.
- [22] S. Zhang, J. Zhang, and H. C. So, “Mean square deviation analysis of LMS and NLMS algorithms with white reference inputs,” *Signal Processing*, vol. 131, pp. 20–26, Feb. 2017, doi: 10.1016/j.sigpro.2016.07.027.
- [23] K. Ngo, T. van Waterschoot, M. Græsbøll Christensen, M. Moonen, and S. Holdt Jensen, “Improved prediction error filters for adaptive feedback cancellation in hearing aids,” *Signal Processing*, vol. 93, no. 11, pp. 3062–3075, Nov. 2013, doi: 10.1016/j.sigpro.2013.03.042.
- [24] G. Bernardi, T. van Waterschoot, J. Wouters, M. Hillbm, and M. Moonen, “A PEM-based frequency-domain Kalman filter for adaptive feedback cancellation,” in *2015 23rd European Signal Processing Conference (EUSIPCO)*, IEEE, Aug. 2015, pp. 270–274. doi: 10.1109/EUSIPCO.2015.7362387.
- [25] I.-D. Fîciu, C.-L. Stanciu, C. Elisei-Iliescu, C. Anghel, C. Paleologu, and J. Benesty, “Low-complexity

data-reuse RLS algorithm with increased robustness features,” in *Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies XI*, M. Vladescu, I. Cristea, and R. D. Tamas, Eds., SPIE, Mar. 2023, p. 63. doi: 10.1117/12.2643172.

[26] Yaohui Liu, P. S. R. Diniz, and T. I. Laakso, “Adaptive Steiglitz-McBride notch filter design for radio interference suppression in VDSL systems,” in *GLOBECOM’01. IEEE Global Telecommunications Conference (Cat. No.01CH37270)*, IEEE, pp. 359–363. doi: 10.1109/GLOCOM.2001.965139.

[27] X. Ma, Z. Li, W. Wang, Z. Chen, and R. Zhang, “Study of Howling Suppression Based on FPGA and Wavelet Packet Transform,” *Proceedings - 2017 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration, ICIICII 2017*, vol. 2017-December, pp. 130–134, Jul. 2017, doi: 10.1109/ICIICII.2017.14.

[28] N. Ghamry, “FPGA Implementation of Hearing Aids using Stationary Wavelet-Packets for Denoising,” *Int J Comput Appl*, vol. 69, no. 15, pp. 30–36, May 2013, doi: 10.5120/11921-8125.

[29] A. B. Diggikar and S. S. Ardhapurkar, “Design and implementation of adaptive filtering algorithm for Noise Cancellation in speech signal on FPGA,” in *2012 International Conference on Computing, Electronics and Electrical Technologies (ICCEET)*, IEEE, Mar. 2012, pp. 766–771. doi: 10.1109/ICCEET.2012.6203789.

[30] A. Gohn and J. Kim, “Implementation of LMS Adaptive Filter Algorithm based on FPGA,” in *2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)*, IEEE, Aug. 2019, pp. 207–210. doi: 10.1109/MWSCAS.2019.8885239.

[31] M. K. Pavuluri and B. S. Prasanthi, “Low latency area efficient adaptive LMS filter using FPGA,” in *2017 International Conference on Communication and Signal Processing (ICCSP)*, IEEE, Apr. 2017, pp. 0114–0116. doi: 10.1109/ICCSP.2017.8286695.

[32] C. V. Niras and Yinan Kong, “LMS algorithm implementation in FPGA for noise reduction and echo cancellation,” in *Fourth International Conference on Advances in Recent Technologies in Communication and Computing (ARTCom2012)*, Institution of Engineering and Technology, 2012, pp. 193–195. doi: 10.1049/cp.2012.2525.

[33] C. Dragoi, C. Anghel, C. Stanciu, and C. Paleologu, “Efficient FPGA Implementation of Classic Audio Effects,” in *2021 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)*, IEEE, Jul. 2021, pp. 1–6. doi: 10.1109/ECAI52376.2021.9515041.