

Ethical Considerations in Medical Imaging: Navigating Patient Rights, Data Integrity, and Technological Innovation

*Pavithra Madushani Wendabona

Faculty of Technology, International College of Business and Technology
 *pmadushani97@yahoo.com

Received:20 November 2025; Revised: 01 December 2025; Accepted: 15 December 2025; Available online: 10 January 2026

Abstract: Medical imaging has become a cornerstone of modern healthcare, enabling early diagnosis, treatment planning, and disease monitoring across a wide spectrum of conditions. From the first X-ray images in the late 19th century to contemporary applications of artificial intelligence (AI) in radiology, imaging technologies have transformed clinical practice. However, these advances raise profound ethical concerns. Patient autonomy, data privacy, diagnostic accuracy, and equitable access must be balanced against rapid technological innovation. Emerging issues such as algorithmic bias, ground truth inconsistencies, and the “black box” nature of AI deepen the ethical complexity. This paper provides a comprehensive review of ethical considerations in medical imaging, analyzing historical foundations, patient rights, data governance, diagnostic integrity, and technological transparency. The goal is to demonstrate how ethical frameworks and professional responsibility can safeguard patients while ensuring that innovation enhances rather than undermines healthcare delivery.

Index Terms: Artificial Intelligence, Data Privacy, Diagnostic Accuracy, Ethics, Medical Imaging, Patient Rights, Radiology, Transparency

1 INTRODUCTION

The Medical imaging is integral to contemporary healthcare systems, underpinning accurate diagnosis and informed clinical decisions. Technologies such as computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasound have redefined medicine by offering non-invasive insights into human anatomy and physiology [1]. Today, medical imaging contributes to nearly every specialty, including oncology, neurology, cardiology, and emergency medicine.

With increasing sophistication, imaging has also become a focal point of ethical debate. Issues around radiation exposure, informed consent, and incidental findings have long existed in radiology [2]. More recently, digitalisation and the adoption of machine learning and artificial intelligence (AI) tools have introduced novel dilemmas: data privacy breaches, algorithmic bias, lack of transparency, and professional accountability [3]. These challenges are not merely technical but profoundly ethical, as they directly affect

patient trust, healthcare equity, and societal well-being.

This review examines the ethical considerations surrounding medical imaging in detail. Section 2 traces the historical and philosophical foundations of imaging ethics, while Section 3 explores patient rights and informed consent. Section 4 investigates data ownership, privacy, and governance, and Section 5 analyses the challenges of bias, ground truth, and diagnostic reliability. Later sections (covered in Part 2) will focus on transparency, black-box AI, practical ethical issues, and potential solutions.

By framing medical imaging ethics within the principles of autonomy, beneficence, non-maleficence, and justice, this paper argues that innovation in imaging must remain firmly grounded in patient-centred values [4].

2 BACKGROUND AND FOUNDATIONS OF ETHICS IN IMAGING

2.1 Historical context

The discovery of X-rays in 1895 by Wilhelm Röntgen revolutionised medicine but also introduced ethical dilemmas almost immediately. Early radiologists and patients were unaware of the risks associated with ionising radiation, leading to burns, cancers, and occupational hazards [5]. The establishment of radiation protection standards was therefore one of the first ethical frameworks in imaging, guided by the principle of **non-maleficence**—avoiding harm to patients and practitioners [6].

The mid-20th century saw the rise of nuclear medicine and CT scanning, both of which further raised ethical questions regarding radiation safety, consent, and responsible use in vulnerable populations [7]. The advent of MRI and ultrasound shifted the ethical landscape toward managing incidental findings and overdiagnosis rather than radiation risks [8].

2.2 Philosophical foundations

Bioethical theory provides four central principles: **autonomy, beneficence, non-maleficence, and justice** [9]. Applied to imaging:

- **Autonomy** ensures patients are informed about procedures, risks, and potential findings.
- **Beneficence** obliges radiologists to maximise diagnostic benefits.
- **Non-maleficence** requires minimising harm, particularly radiation exposure.
- **Justice** demands fair access to imaging technologies.

These principles have shaped codes of conduct by professional societies such as the World Medical Association, the American College of Radiology (ACR), and the European Society of Radiology (ESR) [10].

2.3 Ethical evolution with digital technologies

The digital era has expanded ethical concerns. The transformation of imaging data into digital formats allows wide sharing, reuse, and integration with AI. While this has enabled innovation, it has simultaneously amplified risks of data misuse, re-identification, and commercial exploitation [11]. Thus,

the historical trajectory of imaging ethics—from radiation safety to digital data—illustrates a continual negotiation between innovation and responsibility.

3 PATIENT RIGHTS AND INFORMED CONSENT IN MEDICAL IMAGING

3.1 Informed consent in imaging procedures

Informed consent underpins respect for patient autonomy. In imaging, consent involves disclosure of risks (e.g., radiation exposure, contrast agent reactions), benefits (diagnostic accuracy), and alternatives (e.g., ultrasound vs. CT) [12]. Challenges arise in emergency settings where consent may be presumed, or when patients lack the capacity to understand risks due to cognitive impairment [13].

In radiology, informed consent is particularly complex because patients may not fully grasp abstract risks like long-term radiation-induced cancer. The principle of transparency requires radiologists to explain procedures in understandable language, avoiding technical jargon [14].

3.2 Incidental findings and ethical disclosure

Advanced imaging often reveals incidental findings unrelated to the original diagnostic purpose. For example, brain MRIs may detect asymptomatic aneurysms or tumours [15]. The ethical dilemma is whether and how to disclose such findings. Non-disclosure risks violating autonomy, while disclosure may cause unnecessary anxiety or lead to costly interventions of uncertain benefit [16]. Professional guidelines increasingly recommend balanced disclosure that considers patient preferences and clinical significance.

3.3 Global and cultural perspectives on consent

Consent is culturally mediated. In some societies, family consent may take precedence over individual consent, complicating international ethical standards [17]. Moreover, disparities in literacy and access to information make meaningful consent difficult in low-resource settings. Ethical frameworks must therefore adapt to cultural contexts while upholding universal principles of respect and dignity [18].

4 DATA-RELATED ETHICAL ISSUES

4.1 Data ownership and control

Medical imaging generates vast datasets essential for AI training. The question of who owns these data remains contentious. Under the EU's General Data Protection Regulation (GDPR), patients retain ownership of identifiable medical data and must consent to reuse [19]. In contrast, in some jurisdictions, imaging data may be considered the property of healthcare providers or governments [20].

This raises ethical questions about profit-sharing when commercial companies develop lucrative AI tools using patient data. Should patients share in the benefits if their scans contributed to algorithm development? Some propose blockchain-based models to track data provenance and ensure fair benefit distribution [21].

4.2 Privacy and re-identification risks

Even anonymised imaging datasets carry re-identification risks. For instance, facial reconstruction from 3D head MRIs can re-identify individuals with high accuracy [22]. Additionally, combining imaging data with external digital footprints (social media, smartphone usage) could enable re-identification [23]. This threatens privacy and may result in discrimination by insurers, employers, or governments.

4.3 Ethical data governance

Robust governance frameworks are essential to mitigate these risks. Ethical use of imaging data requires dynamic consent models, transparency about secondary use, and strict security standards [24]. Without such safeguards, patients may lose trust in imaging research, undermining innovation.

5 BIAS, GROUND TRUTH AND DIAGNOSTIC ACCURACY

5.1 Dataset bias

AI algorithms in imaging are only as reliable as the datasets they are trained on. Bias occurs when datasets under-represent certain groups, such as ethnic minorities, women, or older adults [25]. This may lead to reduced diagnostic accuracy for those groups, exacerbating health inequities and violating the principle of justice [26]. For example, algorithms trained primarily on Western populations may misinterpret imaging features in non-Western populations, leading to misdiagnosis [27]. Similarly, reliance on data from tertiary hospitals may not generalise to community settings [28].

5.2 Ground truth challenges

Supervised learning requires ground truth labels, but radiological diagnoses are often subjective. Studies show significant inter-observer variability among radiologists interpreting the same images [29]. Furthermore, imaging alone rarely provides definitive diagnosis—pathology or clinical correlation is often needed [30]. Simplifying ground truth into binary categories (“disease” vs. “no disease”) may strip away clinical nuance and reduce ethical fidelity to real-world complexity.

5.3 Overfitting and dataset shift

AI systems trained under controlled conditions may fail in real-world practice due to dataset shift—differences in scanner models, imaging protocols, or patient demographics [31]. Overfitting to training data risks false positives or negatives in deployment, potentially harming patients. Ethically, developers must ensure validation across diverse populations before clinical implementation.

6 TRANSPARENCY AND THE “BLACK BOX” PROBLEM

6.1 The black box dilemma in medical imaging

Artificial intelligence (AI), particularly deep learning, has been described as a “black box” because the internal processes by which algorithms generate outputs are not easily interpretable [32]. In radiology, this creates ethical challenges: if an AI system suggests a cancer diagnosis, but neither the clinician nor the patient can understand the reasoning, trust in both the system and the physician may be undermined [33]. Patients have the right to know how diagnostic decisions are made, particularly when they involve life-altering treatments.

6.2 Interpretability vs. performance

There is an inherent trade-off between algorithmic interpretability and performance. Simpler models like decision trees are easier to explain but may lack diagnostic accuracy, while complex deep neural networks achieve higher performance but are opaque [34]. Ethical imaging requires a balance: algorithms should be accurate yet sufficiently interpretable to allow clinical accountability. Emerging methods such as saliency maps and attention models attempt to highlight which image regions influenced the decision, partially addressing the black box problem [35].

6.3 Patient trust and societal acceptance

Trust is central to medical ethics. If patients perceive AI-driven imaging as mysterious or beyond human oversight, they may resist its use [36]. This risk is heightened in litigious societies where errors often lead to lawsuits. Ethical frameworks therefore stress transparency, explainability, and shared decision-making as prerequisites for societal acceptance of AI in imaging [37].

7 ETHICAL CHALLENGES IN PRACTICE

7.1 Liability and accountability

When errors occur in AI-assisted imaging, determining liability is complex. Traditionally, radiologists bear responsibility for diagnostic errors, but in AI-driven workflows, responsibility is shared between the clinician, the hospital, and the software developer [38]. The European Union's Medical Devices Regulation classifies AI diagnostic tools as medical devices, thereby extending liability to manufacturers [39]. However, courts may still hold radiologists liable if they overrule AI incorrectly or fail to question erroneous outputs [40]. Ethical practice demands clarity in liability frameworks to ensure patient protection without stifling innovation.

7.2 Workforce disruption

AI's ability to automate repetitive tasks raises fears of job losses among radiologists and imaging technicians [41]. While most experts argue that AI will augment rather than replace radiologists, there is still potential for workforce restructuring [42]. Ethical concerns arise when cost-saving motives drive automation at the expense of human oversight, potentially compromising patient safety. Curt Langlotz famously remarked: "Radiologists who use AI will replace radiologists who don't" [43]. This highlights the ethical responsibility to retrain and reskill professionals rather than render them obsolete.

7.3 Conflicts of interest

Radiologists often collaborate with commercial companies developing AI imaging tools. While such partnerships accelerate innovation, they may create conflicts of interest where financial incentives overshadow patient welfare [44]. Ethical practice requires transparency in financial disclosures, institutional oversight, and safeguards against biased recommendations.

7.4 Global inequalities in access

Medical imaging technologies, particularly AI-enhanced tools, are concentrated in high-income countries. Low-resource regions often lack even basic radiography services [45]. This disparity raises ethical concerns of justice and equity, as technological advances risk widening global health inequalities [46]. International efforts, such as WHO's initiatives on accessible imaging, stress the moral obligation to extend benefits equitably across populations [47].

8 SOLUTIONS AND FRAMEWORKS FOR ETHICAL IMAGING

8.1 Professional guidelines

Professional bodies in radiology have increasingly recognized that the adoption of AI and advanced imaging technologies necessitates clearly defined ethical frameworks. In 2019, a joint statement by the European Society of Radiology (ESR), American College of Radiology (ACR), Radiological Society of North America (RSNA), and Canadian Association of Radiologists emphasized the importance of transparency, accountability, fairness, and patient-centeredness in AI applications [48]. Transparency requires that the functioning of AI systems be explainable to clinicians and, where appropriate, to patients. Accountability entails clearly delineating responsibility when errors or harms occur. Fairness focuses on ensuring that AI systems do not propagate existing healthcare disparities, particularly across racial, socio-economic, or geographic lines. Patient-centeredness prioritizes the rights, preferences, and well-being of individuals in clinical decision-making.

Similar ethical guidance has been developed by French and Italian radiology societies, emphasizing local regulatory compliance, cultural considerations, and context-specific patient engagement [49]. Collectively, these professional guidelines provide radiologists and healthcare institutions with structured frameworks for responsible deployment, monitoring, and auditing of imaging technologies, ensuring alignment with universal bioethical principles.

8.2 Algor-ethics and ethical-by-design systems

The notion of “algor-ethics” has emerged as a proactive approach to embedding ethical considerations directly into AI algorithms [50]. Rather than retroactively addressing ethical failures, ethical-by-design systems are constructed with built-in safeguards to mitigate bias, enhance transparency, and uphold patient safety.

Key strategies include:

- Bias audits: Regular evaluation of datasets and algorithmic outputs to identify and correct disparities. For instance, ensuring imaging datasets represent diverse populations avoids biased diagnostic performance in underrepresented groups.
- Diverse and representative training datasets: Including images across genders, ethnicities, and ages improves the generalizability and fairness of AI predictions.
- Human-in-the-loop oversight: AI systems assist but do not replace human decision-making, ensuring that final clinical judgments remain accountable and ethically defensible.

- Explainable AI (XAI): Techniques such as Grad-CAM or attention mapping help clinicians visualize the rationale behind algorithmic predictions, facilitating transparency and trust.

By integrating ethics into the design, development, and deployment stages, algor-ethics aims to prevent harm, reduce disparities, and enhance the reliability of AI-assisted imaging.

8.3 Blockchain and data governance

Data governance is central to ethical imaging, particularly as AI increasingly relies on large-scale patient datasets. Blockchain technology provides a promising framework for secure, transparent, and patient-centered data management [51]. By creating immutable, time-stamped records of consent, data usage, and benefit-sharing, blockchain ensures that patients maintain control over their imaging data.

Potential benefits include:

- Enhanced trust: Patients can verify how their data is used, fostering confidence in AI applications.
- Transparent consent mechanisms: Blockchain can automate tracking of informed consent, ensuring compliance with ethical and legal requirements.
- Equitable data sharing: Patients could potentially share in the benefits of AI-derived commercial applications, promoting fairness in healthcare innovation.

Such approaches not only protect patient rights but also provide healthcare institutions with verifiable, auditable systems for compliance with privacy regulations like GDPR.

8.4 Education and capacity building

Technical solutions alone cannot ensure ethical imaging. Radiologists and healthcare professionals require comprehensive education on the ethical, legal, and social implications of AI [52].

Key components include:

- Training on algorithmic bias: Understanding the sources and impact of bias helps clinicians critically evaluate AI outputs.
- Data privacy and security laws: Familiarity with GDPR, HIPAA, and national regulations ensures legal compliance.
- Responsible AI use: Professionals must be able to integrate AI insights without undermining clinical judgment or patient trust.

Medical curricula increasingly incorporate modules on digital ethics, preparing the next generation of radiologists to balance technological innovation with human-centered care. Ethical imaging thus becomes not just a technical challenge but a cultural and professional responsibility, fostering an ethos of accountability, integrity, and patient advocacy.

9 CONCLUSIONS

Medical imaging has evolved remarkably since Rontgen's discovery of X-rays, progressing from simple radiographs to advanced AI-driven diagnostic systems. This transformation has greatly improved diagnostic accuracy, efficiency, and accessibility, enabling earlier detection and treatment of diseases. However, alongside these advancements arise complex ethical, legal, and social challenges that innovation alone cannot resolve.

Traditional ethical concerns—such as radiation safety, informed consent, and incidental findings—now coexist with new dilemmas related to AI and digitalization, including data privacy, algorithmic bias, lack of transparency, and unequal access to technology. These issues emphasize that ethical governance must accompany technical excellence.

Ethical imaging is guided by the bioethical principles of autonomy, beneficence, non-maleficence, and justice. Respecting autonomy requires informed consent and patient-centered care. Beneficence and non-maleficence demand that AI tools improve outcomes without introducing harm or bias. Justice ensures equitable access to imaging innovations across all populations, preventing technological disparities.

Professional frameworks from bodies like the ESR, ACR, and RSNA highlight transparency, accountability, and fairness. Ethical-by-design AI—incorporating ethics during algorithm development—further reduces risks through diverse datasets, human oversight, and explainable systems. Strong data governance, supported by technologies like blockchain, protects patient privacy and consent, while education ensures clinicians understand both the technical and ethical aspects of AI.

Ultimately, the future of medical imaging will be defined not just by innovation but by ethical integrity. Embedding ethics throughout the lifecycle—from data collection to clinical application—ensures that progress in radiology enhances health while preserving dignity, privacy, and trust. Harmonizing technological advancement with ethical principles will allow medical imaging to continue transforming healthcare responsibly and equitably.

References

- [1] Röntgen, W.C. (1896). On a new kind of rays. *Nature*.
- [2] Hall, E.J. & Giaccia, A. (2018). *Radiobiology for the Radiologist*. 8th ed. Wolters Kluwer.
- [3] Brady, A.P. & Neri, E. (2020). Artificial intelligence in radiology—ethical considerations. *Diagnostics*, 10(4), 231.
- [4] Beauchamp, T. & Childress, J. (2019). *Principles of Biomedical Ethics*. Oxford University Press.
- [5] Kevles, B. (1997). *Naked to the Bone: Medical Imaging in the Twentieth Century*. Rutgers University Press.
- [6] International Commission on Radiological Protection (ICRP). (2007). The 2007 Recommendations of the ICRP. *Annals of the ICRP*, 37(2-4).
- [7] Mould, R.F. (1995). *A Century of X-rays and Radioactivity in Medicine*. Institute of Physics Publishing.
- [8] Illes, J., Kirschen, M.P., & Gabrieli, J.D. (2003). From neuroimaging to neuroethics. *Nature Neuroscience*, 6(3), 205-210.

- [9] Gillon, R. (1994). Medical ethics: four principles plus attention to scope. *BMJ*, 309(6948), 184–188.
- [10] American College of Radiology. (2019). *Code of Ethics*. ACR.
- [11] European Society of Radiology. (2019). White Paper: What the radiologist should know about artificial intelligence. *Insights into Imaging*, 10, 44.
- [12] Appelbaum, P.S. (2007). Assessment of patients' competence to consent to treatment. *NEJM*, 357(18), 1834–1840.
- [13] Lidz, C.W. et al. (1984). *Informed consent: A study of decision-making in psychiatry*. Guilford Press.
- [14] Faden, R.R. & Beauchamp, T.L. (1986). *A History and Theory of Informed Consent*. Oxford University Press.
- [15] Vernooij, M.W. et al. (2007). Incidental findings on brain MRI in the general population. *NEJM*, 357, 1821–1828.
- [16] Wolf, S.M. et al. (2008). Managing incidental findings in human subject's research. *J Law Med Ethics*, 36(2), 219–248.
- [17] Hsin, D.H. & Macer, D.R. (2006). Confucian ethics and informed consent in medical research. *Bioethics*, 20(6), 314–322.
- [18] Hyder, A.A. et al. (2004). Ethical review of health research: a perspective from developing country researchers. *J Med Ethics*, 30, 68–72.
- [19] European Union. (2016). *General Data Protection Regulation (GDPR)*.
- [20] Gostin, L.O. et al. (2009). The public health information infrastructure: ethics and law. *JAMA*, 302(1), 82–84.
- [21] Kuo, T.T. et al. (2017). Blockchain for medical data sharing. *Journal of the American Medical Informatics Association*, 24(6), 1211–1220.
- [22] Mazura, J.C. et al. (2012). Facial recognition software and patient privacy. *J Digit Imaging*, 25, 347–351.
- [23] Na, L. et al. (2018). Reidentification in physical activity datasets. *JAMA Network Open*, 1(8), e18640.
- [24] Mittelstadt, B.D. (2019). Principles alone cannot guarantee ethical AI. *Nature Machine Intelligence*, 1, 501–507.
- [25] Obermeyer, Z. et al. (2019). Dissecting racial bias in an algorithm used to manage population health. *Science*, 366, 447–453.
- [26] Rajkomar, A. et al. (2018). Ensuring fairness in machine learning for health care. *Ann Intern Med*, 169(12), 866–872.
- [27] Adamson, A.S. & Smith, A. (2018). Machine learning and health disparities. *JAMA*, 320(12), 1317–1318.
- [28] Kelly, C.J. et al. (2019). Key challenges in delivering clinical impact with AI. *BMC Medicine*, 17, 195.
- [29] Geijer, H. & Geijer, M. (2018). Added value of double reading in diagnostic radiology. *Insights Imaging*, 9, 287–301.
- [30] Raunig, D.L. et al. (2015). Quantitative imaging biomarkers. *Acad Radiol*, 22(5), 625–635.
- [31] Recht, M.P. et al. (2020). Integrating AI into radiology practice. *Radiology*, 295(3), 477–484.
- [32] Castelvecchi, D. (2016). Can we open the black box of AI? *Nature*, 538, 20–23.
- [33] Lipton, Z.C. (2018). The mythos of model interpretability. *Communications of the ACM*, 61(10), 36–43.
- [34] Rudin, C. (2019). Stop explaining black box machine learning models. *Nature Machine Intelligence*, 1, 206–215.
- [35] Selvaraju, R.R. et al. (2017). Grad-CAM: Visual explanations from deep networks. *ICCV*.
- [36] Winfield, A.F. & Jirotka, M. (2018). Ethical governance for trustworthy AI. *Philos Trans R Soc A*, 376, 20180085.
- [37] Bonnefon, J.F. et al. (2016). The social dilemma of autonomous vehicles. *Science*, 352, 1573–1576.
- [38] Schönberger, D. (2019). Artificial intelligence in healthcare: legal and ethical implications. *Int J Law Inf Technol*, 27, 171–203.
- [39] EU. (2017). *Regulation (EU) 2017/745 on medical devices*.

- [40] Price, W.N. & Gerke, S. (2020). Liability for AI in healthcare. *J Law Med Ethics*, 48, 85–97.
- [41] Davenport, T. & Kalakota, R. (2019). The potential for AI in healthcare. *Future Healthcare Journal*, 6(2), 94–98.
- [42] Topol, E. (2019). *Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again*. Hachette.
- [43] Langlotz, C. (2019). Will AI replace radiologists? *Radiology: Artificial Intelligence*, 1(3), e190058.
- [44] Bero, L. (2017). Addressing bias and conflict of interest among biomedical researchers. *JAMA*, 317, 1723–1724.
- [45] Mollura, D.J. et al. (2010). White paper on global radiology. *J Am Coll Radiol*, 7(12), 983–989.
- [46] Chetlen, A.L. et al. (2019). Addressing disparities in radiology. *Acad Radiol*, 26(5), 604–610.
- [47] World Health Organization. (2017). *Medical imaging: essential diagnostic tool*. WHO.
- [48] Geis, J.R. et al. (2019). Ethics of AI in radiology: Multisociety statement. *Insights Imaging*, 10, 101.
- [49] Neri, E. et al. (2020). AI and responsibility in radiology. *Radiol Med*, 125, 517–521.
- [50] Floridi, L. & Cowls, J. (2019). A unified framework of five principles for AI. *Harvard Data Science Review*, 1(1).
- [51] Engelhardt, M.A. (2017). Hitching healthcare to the chain: Blockchain. *IEEE*.
- [52] Ranschaert, E.R. et al. (2019). Education on AI for radiologists. *Insights Imaging*, 10, 43.