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Abstract: The increasing penetration of large-scale photovoltaic power plants has intensified the challenge of 
managing power variability caused by rapid changes in solar irradiance. Short term and ultra short-term power 
fluctuations, mainly driven by cloud movement, can lead to severe ramp rate violations and grid instability, 
particularly in weak and island power systems. This review critically examines existing solar power forecasting 
approaches with a focus on short-term forecasting methods relevant to ramp rate control. Conventional physical and 
statistical models are discussed alongside machine learning and deep learning techniques, highlighting their strengths 
and limitations across different time horizons. Special emphasis is placed on vision-based forecasting methods using 
satellite imagery and ground-based sky imagers, which have demonstrated superior capability in capturing fast 
irradiance transients. The review further analyses commonly used input parameters, forecasting horizons, and cloud 
motion prediction techniques. Based on comparative assessment, the paper identifies key research gaps related to 
real-time deployment, data integration, and model generalization. The findings provide a structured foundation for 
developing accurate and practical forecasting frameworks to support grid stability in high solar penetration 
environments. 

Index Terms: Solar power forecasting, Ramp rate mitigation, Sky imager, Cloud motion prediction, Renewable 
energy integration 

 

1 INTRODUCTION                                                                     

Globally, the countries of the world are gradually moving towards renewable energy, aiming to reduce the 

carbon footprint. In according to that, renewable energy sources are clean and unlimited [1], [2]. Most 

common renewable energy sources technologies include hydro power, solar energy (photovoltaic and solar 

thermal), wind energy, biogas, geothermal, biomass, wave and tidal power etc. With the shift to renewable 

energy sources, solar power has emerged as a major trend which is freely available [3], [4], [5], [6], [7], [8].  

Sri Lanka electricity generation is primarily based on thermal and hydropower plants. In order to meet 

future demand for electricity, Sri Lanka is moving toward using renewable energy sources. According to 

the CEB (Ceylon Electricity Board) "Long Term Generation Expansion Plan 2022-2041", their goal is to 

achieve 70% renewable energy in electricity generation by 2030 [9]. The target is to meet all energy 

demands through renewable energy sources and other indigenous sources. In Sri Lankan flat dry zone, solar 

radiation ranges from 4.0 to 4.5 kWh/m2/day, while the high plains receive an average of 2.0 to 3.5 
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kWh/m2/day. Accordingly, it has been estimated that with its huge solar energy potential, specified by its 

tropical climate and sunshine prevailing throughout the year, there could be a rapid growth of large and 

medium scale solar implementations in Sri Lanka. This renewable resource not only provides huge 

opportunities for the augmentation of solar power generation but also for fulfilling the requirements of 

energy. It can reduce the dependency on fossil fuels by exploiting its sunshine throughout the year and 

accelerate sustainable development in Sri Lanka. Results Large-scale solar projects in Sri Lanka have 

already been proposed in order to help the country realize its goals of renewable energy and, therefore, 

provide eco-friendly solutions to the surging energy demand in the country [10][11].   

However, the intermittent and unpredictable irradiance transients cause fluctuations in photovoltaic (PV) 

power generation which can negatively affect grid stability when injected into the grid in PV systems that 

are connected to the national power grid. So, to ensure the stability of the grid in the presence of high PV 

penetration, It is essential to smooth out the fluctuations in solar power generation before integrating it into 

the grid [12]. In smaller power systems like islands, due to its intermittent nature, photovoltaic power may 

cause harmonic distortion in the waveforms of voltage and current, which may cause blackouts [13]. In 

addition, sudden fluctuations in PV power can result in significant voltage deviations, power fluctuations, 

frequency deviations, power quality issues, unintentional islanding, and grid frequency effects causing grid 

stability difficult to maintain, especially in weak distribution grids where PV penetration is high [14]. 

For grid stability, generation and load should always be balanced, which can cause significant ramp rate 

issues in power plants. By sudden drops or surges in grid may cause instability of network leading to power 

generation demand imbalances. PV power ramp rate fluctuations are the main reason for stability 

variations. When large PV generation increases or decreases significantly, problems arise while injecting 

PV power into the grid.  This PV power ramping causes significant power quality issues and voltage 

fluctuations.  The way these fluctuations affect the size of the PV system [15]. According to this, ramp rate 

limitations are imposed by utilities in some countries.  So, PV plant owners and operators impose a 

maximum standard power ramp rate, as examples in Germany ramp rate is 10% of the maximum capacity 

of the plant per minute, in Denmark 11%, In Ireland, Hawaii the ramp rate is limited to 30MW per minute 

[13], [12], [15].   

In Sri Lankan context research, which is done from the perspective of grid integration to determine the 

main variability features of a distributed solar PV generation include that, in a single solar PV plant, there is 

a high probability that the maximum power output variation, approximately around 70% of the plant's 

installed capacity, which can occur within a period of 6 minutes. Also, they observed that 38% per minute 

in their sites [16]. In generally it is important to maintain a ramp rate at least 10% considering global 

context.  

To maintain this grid stability there are several methods that can be achieve ramp rate control. They are, use 

Energy Storage Systems (ESS), active power curtailment, ESS-MPPT (Energy Storage Systems -Maximum 

Power point Tracking) hybrid systems, ESS-FPPT (Energy Storage Systems -Flexible Power point 

Tracking), Short-Term PV forecasting models etc [12], [13], [17],[18]. Among this an energy storage 

system (ESS) can effectively smooth out these fluctuations by charging redundant generated power and 

discharging when output power drops unexpectedly. However, this ESS method is too expensive for utility-

level real power compensation to control both increasing and decreasing ramp rates and have a limited life 

for batteries [13]. active power curtailment, ESS-MPPT, ESS-FPPT methods are feasible for small 

generation variations, these cannot be deployed for large scale PV power plants. Therefore, it is not 
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possible to get a solution for sudden fluctuations only by using an external device [12], [17].  

Short term PV generation forecasting is an optimal method for utility level ramp rate control, providing 

accurate power variation estimates based on weather data, cloud tracking, and historical patterns [13], [15]. 

To effectively address the challenges posed by fluctuations in solar power generation, it is imperative to 

maintain desired ramp rates in power plants. Accurate solar irradiance forecasting is essential for mitigating 

the variability of PV output, and the success of mitigation methods is dependent on the accuracy of these 

forecasts. By incorporating precise forecasts into power plant control systems, operators can proactively 

adjust generation output. This proactive adjustment enables power plants to smoothly ramp up or down in 

response to predicted changes in solar power, avoiding sudden and potentially disruptive shifts that could 

stress equipment and destabilize the grid. Furthermore, the integration of fast response energy storage 

technologies, such as batteries and capacitors, complements accurate forecasts by facilitating swift power 

injection or absorption [14]. This capability is essential in compensating for short term fluctuations, 

maintaining grid stability, and, ultimately, reducing ramp rates. The combination of accurate forecasting 

and advanced energy storage helps to optimize battery charging and discharging processes, resulting in a 

more stable and efficient integration of renewable energy into the power grid [15].  

According to above, Solar power forecasting is necessary for mitigating fluctuations in power systems, 

particularly in regions like Sri Lanka with high solar potential. The intermittent nature of solar power, 

influenced by cloud movement and weather changes, requires accurate solar radiation forecasts. Integrating 

precise forecasts enables efficient energy storage management, smoothing out fluctuations and enhancing 

grid stability while maximizing renewable energy integration.  

2  CLASSIFICATION OF PV FORECASTING 

PV energy forecasts are classified in various ways based on key variables such as prediction horizon, 

variable under prediction, spatial scale, forecast methodology, and forecast type [19]. Below figure 01 

shows a general classification of PV power forecasting, 

 
Fig. 1 General Classification of PV power Forecasting 
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2.1 PV Forecasting Methods  

Several methods and algorithms have been developed for PV forecasting. There are three major categories: 

physical methods, statistical methods, and Hybrid methods. The methods of PV forecasts are summarized 

in Figure 02. 

2.1.1 Physical Methods 

In physical forecasting techniques, forecast solar power generation using atmospheric variables such as air 

pressure, surface roughness, and temperature, based on meteorological data from Numerical Weather 

Prediction (NWP) models. These data include solar irradiance, temperature, humidity, and air pressure. 

NWP models, which can be divided into mesoscale and global models, use atmospheric data and equations 

to make predictions. Significant NWP models include the Global Forecast System (GFS), Climate Forecast 

System (CFS), and Global Data Assimilation System (GDAS), which allowing long term predictions of 

more than 15 days of range [20].  

Furthermore, various NWP forecasting modes, like Weather Research and Forecasting Ensemble Prediction 

System (WEPS), Deterministic Weather Research and Forecasting (WRFD), and Radar Weather Research 

and Forecasting (RWRF), are provide short-term to medium-term forecasting data (from hours to days) 

without requirement of historical data. However, accuracy of these NWP forecasts is dependent on 

meteorological stability, which have challenges in developing physical models for NWP [21]. 

2.1.2 Statistical Methods 

Statistical forecasting techniques that are used for predicting PV power generation uses historical time 

series and real-time data, which require few inputs than deep learning (DL) methods. They can perform 

short-term prediction, outperforming Numerical Weather Prediction (NWP) models. These methods use 

mathematical equations like curve fitting, moving average (MA), and autoregressive (AR) models to 

extract patterns and to build correlations from previous input data. Prediction accuracy is determined by the 

data quality and dimensions. Statistical approaches can be classified into two categories as Machine 

learning and Time series-based forecast models [21]. While statistical methodologies have been around for 

a while and offer benefits such as interpretability, they can be challenging to train because they depend on 

Fig. 2 Forecasting methods of PV Generation 
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explanatory variables [22]. 

 

• Time Series Based 

Time series analysis is the examination of historical data patterns to forecast future values utilizing 

statistical methods such as exponential smoothing, autoregressive moving average (ARMA), and 

autoregressive integrated moving average (ARIMA). These methods seek to identify regular patterns in 

data without being influenced by external factors, but they may produce larger forecast errors when applied 

to unstable data. Exponential smoothing involves giving more weight to recent historical data while 

gradually decreasing weights for distant data points. ARIMA, a hybrid of autoregressive (AR) and moving 

average (MA) models, converts non-constant sequences to constant ones using differential processing 

before using ARMA for prediction. The AR model computes a weighted average of past data based on its 

relationship to real time data, while the MA model addresses random errors by averaging them [23]. 

• Exponential Smoothing 

The exponential smoothing method, also known as exponentially weighted moving average (EWMA), uses 

the exponential window function to analyse historical time series data and predict future outcomes. The 

algorithm assigns unequal weights to historical observations, resulting in an exponential reduction of data 

from recent to distant points. However, it can easily learn and make decisions based on assumptions [23]. 

• ARMA (Auto Regressive Moving Average) 

ARMA, a time series analysis tool, is valued for its forecasting capabilities, particularly in fields such as 

solar and wind energy. ARMA uses autoregressive (AR) and moving average (MA) components to 

generate predictive models from historical data. Its adaptability and ability to recognize cyclical patterns 

are significant advantages. However, ARMA's reliance on static time series data has limitations. Despite 

this drawback, its simplicity and interpretability make it popular for short-term forecasting. However, 

ARMA may face difficulties with nonlinear relationships and long-term forecasting [23]. 

• ARIMA (Auto Regressive Integrated Moving Average) 

The ARIMA model, which is an extended version of ARMA, is recognized for its flexibility and 

interpretability in time series forecasting. ARIMA, which includes autoregressive (AR), integration (I), and 

moving average (MA) components, excels at capturing various time series patterns and ensuring a 

consistent level of forecast accuracy for short-term horizons [23]. Notably, it can handle non-stationary 

values in the analysed data. Despite its benefits, ARIMA's linear assumption, sensitivity to parameter 

selection, and limitation in capturing long-term dependencies are all important considerations. However, 

ARIMA's robustness to outliers, ability to manage missing data, and statistical soundness make it an 

invaluable tool for practical forecasting applications in a wide range of domains. 

• Machine Learning 

The introduction highlights machine learning (ML) as an AI field where machines autonomously discern 

patterns in historical and current data to make predictions with minimal loss. ML forecasting algorithms 

offer advanced patterns and approaches, primarily aimed at improving forecast accuracy while minimizing 
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loss. Unlike conventional methods, which rely on explainable linear processes, ML methods utilize 

nonlinear approaches to minimize loss functions, optimizing prediction accuracy [24]. 

Machine learning models establish relationships between input and output variables in datasets, essential 

for forecasting tasks [25]. ML employs algorithms that learn from training data, uncovering complex 

patterns and insights without explicit programming. However, challenges arise from the training process 

and the volume of data required. 

ML automates large-scale data such as categorization, regression, and clustering. In addition to that, ML is 

more accurate for medium and long term forecasting than time series generation techniques, which struggle 

to estimate nonlinear models with high precision [26]. 

These are some examples for ML algorithms which used for forecasting models, Artificial Neural Network 

(ANN), Support Vector Machines (SVM), Support Vector Regression (SVR), Regression Trees, Random 

Forest etc.   

• Deep Learning 

The introduction to Deep Learning (DL) as an AI subset in which neural networks autonomously identify 

complex patterns in data, improving prediction accuracy with minimal loss and leaving from traditional 

methods by using nonlinear approaches to optimize outcomes.  

DL is a novel approach to ML that employs a deep architecture to generate precise and efficient models. 

DL techniques efficiently analyse time-series data by turning input data through multiple linear or non-

linear processes and extracting the output from deep architecture [25]. 

DL is capable of overcoming the limitations of shallow models in feature extraction and hyperparameter 

over-tuning. It is capable of learning from large amounts of data, including imbalanced and heterogeneous 

datasets with high dimension. Complexity and difficulty of renewable energy data, changing weather 

patterns must always be taken into account when extracting the data relationship from high-dimensional 

data [27]. 

2.1.3   Hybrid Methods 

The hybrid technique combines physical and statistical methods to make predictions. The physical model 

provided by the PV module manufacturers is first applied, and the result is then analysed statistically to 

improve accuracy. Combining two different physical or statistical techniques is also a type of hybrid. A 

drawback of the hybrid method is that it is more complex because it employs more than one technique and 

requires considerably greater machine resources [28]. 

As an example, Ensemble forecasting is a method of hybrid approach, which combines multiple predictions 

from various models or methods, is a combination of statistical and physical models. It leverages the 

strengths and minimizes the weaknesses of individual approaches to produce a more accurate forecast. The 

core idea of ensemble technique involves training multiple base learners, then they combine their 

predictions to improve model performance with a unified output [29]. 

3      INPUT PARAMETERS OF SOLAR POWER GENERATION FORECASTING 

According to my literature review, several input parameters have been identified in previous works. Solar 

irradiance, sourced from Numerical Weather Prediction (NWP) models, Thermopile pyranometers data, 
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solar irradiance maps and satellite data, stands out as the most pivotal parameter, directly dictating the 

quantity of solar energy received. Cloud cover and motion, obtained from satellites, ground-based 

observations, or NWP models, provide essential insights into future cloud cover changes, influencing solar 

irradiance dynamics. Historical weather parameters such as relative humidity, precipitation, temperature, 

dew point, wind speed, and snow cover, with their impact varying across countries, locations, and seasons. 

Through techniques like Pearson correlation, researchers have discerned the specific factors influencing 

solar irradiance. Additionally, historical PV generation data is incorporated to further refine solar energy 

forecasting models.  

In a recent study, researchers analysed historical weather data from a weather station to predict solar 

generation. They found strong correlations between sky cover, relative humidity, precipitation, and solar 

intensity, while temperature, dew point, and wind speed showed partial correlations with each other and 

solar intensity. This insight highlights the complex relationship between weather parameters and solar 

energy generation, providing valuable guidance for improving predictive models in renewable energy 

research [30]. 

In recent Korean research, a comprehensive dataset was employed, comprising historical PV power 

generation data, solar irradiance maps, and diverse weather parameters such as temperature, sunlight 

duration, insolation, cloudiness, cloud height, fine dust levels, snowfall, and rainfall. Researchers 

conducted a thorough analysis using three distinct methods: monthly, seasonal, and a revised seasonal 

approach considering global warming. This comprehensive analysis, which took historical trends and 

potential climate change influences into account [31]. 

A recent study in Illinois, USA, aimed to improve daily solar radiation predictions using a hybrid deep 

learning model and various climatic data combinations from two stations. Parameters like relative humidity, 

temperature, precipitation, and wind speed were considered. This research sought to enhance the accuracy 

of solar radiation forecasts, providing insights into better prediction models by integrating climatic data 

[32]. 

In a recent paper, researchers introduced a dual-stream network for accurate PV forecasting. Their input 

data comprised active power, wind speed, temperature, humidity, global radiation, diffuse radiation, wind 

direction, and rainfall. This approach aimed to improve PV forecasting accuracy by integrating diverse 

parameters into a dual-stream network framework [33]. 

A study in Sri Lanka focused on predicting daily solar power generation using weather forecasts from 

Hambantota. Input parameters included daily power generation, average GHI, temperature, humidity, 

precipitation, and wind speed. Researchers suggested enhancing the model by considering additional 

meteorological parameters and emphasized the importance of cloud cover in improving predictive accuracy 

[34], [35].  

A study focused on cloud cover nowcasting using satellite images from EUMETSAT's "Geostationary 

Nowcasting Cloud Type" product, which classifies clouds into 16 categories based on height and type. 

Nowcasting, a short-term weather forecasting method, was the primary objective. The research aimed to 

enhance cloud cover prediction accuracy using advanced satellite imagery and classification [36]. 

In a study, researchers employed an Enhanced Convolutional Neural Network to predict Global Horizontal 

Irradiance (GHI) on short time horizons. They utilized sequences of infrared images from an All-Sky 
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Imager, with solar radiation measurements encoded as coloured pixels in the images. The study aimed to 

improve the accuracy of very short-term GHI forecasts by integrating infrared imagery and encoded solar 

radiation data [37]. 

In a study on short-term solar radiation forecasting, researchers combined ground-based sky camera images 

capturing hemispherical views with data from the Atmospheric Radiation Measurement (ARM) dataset. By 

integrating these datasets, the study aimed to enhance the accuracy of short-term solar radiation predictions 

[38]. 

In research, all-sky images were incorporated into a short-term solar irradiance forecasting model. This 

model aimed to enhance accuracy by integrating data such as solar irradiance and solar power output 

alongside the all-sky images. By combining these inputs, the study aimed to improve short-term solar 

irradiance predictions [39]. 

Recent research on ultra short-term PV generation forecasting utilized ground-based whole sky cameras 

(Sky-Imagers) for spatial data and incorporated weather/timestamps data alongside PV generation data for 

temporal context. This comprehensive approach aimed to improve the accuracy of ultra-short-term PV 

generation forecasts by considering spatial and temporal factors alongside historical generation data [40]. 

In recent research, both satellite observations and all-sky cameras were utilized to predict short-term 

fluctuations in solar energy production caused by occluding clouds. The study aimed to provide forecasts 

for different time scales, with all-sky cameras predicting up to 30 minutes ahead and satellite observations 

extending forecasts up to 6 hours ahead [41]. 

 

4      FORECASTING TIME HORIZONS 

Solar radiation forecasting is important for managing solar power within the electricity grid due to the 

challenges posed by meteorological variability. Accurate forecasts aid grid operators in balancing supply 

and demand, enhancing system dependability, and reducing the need for large energy storage backups. 

These forecasts are categorized based on various time horizons, such as intra hour, intraday, and day-ahead 

cycles, each serving different end user applications in the energy sector [42][43]. While there are no 

standardized parameters for classification, recent research suggests categorizing forecasting methods based 

on time horizons, data availability, and type into four main groups. This classification assists researchers 

and energy suppliers in effectively managing solar energy production based on forecasted horizons and 

applications [44]. So, for real-time forecasting method related with minutes/seconds category because the 

main objective of my approach is to maintain ramp rate. Figure 03 shows Predictive scale of grid energy 

management. 
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5      TOTAL SKY COVER PREDICTION 

Even if large scale solar power plants are installed to meet the electricity energy needs Due to the 

intermittent and unpredictable nature of the solar source accurate solar radiation prediction is becoming 

increasingly important for grid connections and standalone networks [37]. In according to that cloud cover 

is one of the factors affecting solar power generation because it poses a significant challenge for stable 

power grids relying on solar energy from PV plants due to rapid fluctuations in solar irradiance, known as 

solar ramping. These fluctuations can lead to a sudden drop in power output, sometimes exceeding 60% at 

specific locations, when clouds pass over PV installations [38]. To overcome this challenge an effective 

strategy to integrate solar energy into the grid involves anticipating energy supply variability and adjusting 

grid responses accordingly. This includes predicting short-term fluctuations in electricity production caused 

by cloud cover at various time scales, such as nowcasting for 5, 10, and 15-minute intervals [41]. By 

assessing solar radiation at these short interval’s aids in power smoothing, real-time dispatch monitoring, 

and PV storage management, ultimately enhancing grid stability and reliability amidst rapid changes in 

solar irradiance [37]. 

5.1   Data Acquisition 

According to the review of input parameters of solar power generation forecasting, this cloud imaginary-

based prediction mainly under two categories as: Satellite Image approach and Total Sky imagers approach. 

Research used these satellite images, total sky imagers as well as exogenous data to input weather 

parameters, hybrid approaches by combining satellite images and total sky images, and also infrared 

images utilized [36], [37], [39], [41], [45]. According to my background review, the motivation for 

selecting the All-Sky Imager method stems from the necessity for real-time forecasting in the context of 

solar power generation. With the imperative to forecast within a narrow time horizon of 5 to 15 minutes to 

accurate predictions to mitigate the effects of power generation ramp down. However, the All-Sky Imager 

method offers a unique advantage by providing comprehensive views of the sky in real-time, capturing vital 

Fig. 3 Predictive Time Scales of Energy Management 
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data on cloud cover, movement, and speed. Below figure 04 shows the predictive methods according to the 

time horizon and temporal resolution.  

 

 

 

The reason for selecting this as the most appropriate method is, according to the World Meteorological 

Organization, satellite-based data is used to forecast solar radiation, with the optimal prediction window 

ranging from 30 minutes to 6 hours ahead. The technique involves capturing multiple images within an 

hour to cover extensive areas with both spatial and temporal precision. Satellites offer continuous 

monitoring of cloud movement over an extended period, enabling more accurate predictions of solar 

radiation levels. The Total Sky Imager (TSI) could do high-resolution and short-term forecasting over the 

satellite imagery approach. So, for real time forecasting the most suitable input data is total sky imager 

[44]. Also, there was a method which was done by using sequence of IR images, they mentioned that there 

is a drawback which IR image do not have ability to distinguish overcast sky any sunny day sky separately 

[37]. So, to achieve this objective I will deploy a 170-degree video capturing camera to obtain 

comprehensive images of the entire sky. Simultaneously, I will integrate a small photovoltaic (PV) panel to 

collect data on PV generation and solar irradiance. This dual approach allows for the concurrent 

observation of sky conditions and the corresponding changes in PV generation and solar irradiance. By 

correlating the cloud details captured by the sky images with the irradiance data and PV generation data, to 

develop a forecasting model to predict future power generation enabling more accurate forecasts of power 

generation potential.  

 

5.2   Methodologies Based on Sky Cover Prediction 

An Enhanced Convolutional Neural Networks (ECNN) for very short-term solar radiation forecasting in 

recent study. Here, thorough pre-processing of infrared sky images to eliminate unfavorable weather 

conditions and enhance efficiency by converting them to grayscale. Additionally, essential data such as 

Global Horizontal Irradiation (GHI) are integrated into pre-processed images. The ECNN, inspired by the 

Fig. 4 Solar PV Predictive Methods, Time Horizons vs Temporal 
Resolution 
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VGG architecture, is trained to analyses sequences of three consecutive images to capture cloud movement 

dynamics. [37].  

In a recent study utilizing pre-trained prediction algorithms, researchers explored short-term solar radiation 

forecasting with Total Sky images and deep learning. They employed transfer learning with pre-trained 

architectures like AlexNet and ResNet-101 to extract features efficiently, reducing training time. The 

extracted features were fed into an ensemble of 100 decision trees, trained separately for morning, day, and 

evening scenarios[38]. 

In a study they proposed an ultra-short-term PV generation forecasting utilizes sky image sequences and a 

Convolutional Neural Network (CNN) enhanced with exogenous data. Pre-processing involves filtering out 

unfavorable weather conditions and converting images to grayscale. The CNN captures cloud movement 

dynamics through consecutive three-image sequences, with an Enhanced CNN (ECNN) further improving 

accuracy by directly embedding GHI information [45].  

The computer vision-based study integrates ground-based sky images, single-frame RGB images, and 

historical GHI and meteorological data. It employs the Cuboid descriptor on grayscale sequences for 

spatiotemporal cloud features and uses Spatial Pyramid Pooling for scale refinement. Additionally, a Dense 

Convolutional Network (DenseNet) extracts static features from RGB images, which are fused with GHI 

and meteorological data to create a comprehensive feature map for forecasting [46]. 

In a research study they improve short-term solar irradiance forecasting by merging sky and satellite 

images using computer vision and Deep Learning. An ECLIPSE architecture extracts features from both 

image types and combines them for forecasting [41]. A study on Transformer-based multimodal-learning 

framework. Initially, Informer encodes historical and empirically estimated clear-sky GHI. Then, ground-

based sky images are transformed into optical flow maps, which are processed by Vision Transformer [47]. 

One study introduces a novel Multi-Layer Cloud Motion Vector (3D-CMV) forecasting technique. It is 

combined with the fast radiative transfer model (FRTM) to produce forecasts up to 3 hours ahead at 15-

minute intervals over 5km × 5km grids across Europe and North Africa. The cloud microphysics data are 

obtained from the Support to Nowcasting and Very Short-Range Forecasting [48]. 

Most of the papers data undergo pre-processing to align, filter, sample, and format it for deep learning 

model training. Subsequently, the trained model's performance is evaluated by predicting sky cover on new 

data and comparing it against ground truth data [49] [50] . 

A study on computer vision and object detection-based cloud and sun detection presents a methodology 

involving several key steps. Firstly, a Convolutional Neural Network (CNN) model using EfficientDet-D2 

is employed to identify and locate the Sun and clouds within the sky image. Subsequently, an algorithm 

analyses consecutive images to assign unique IDs to clouds and tracks their movement, capturing 

information on speed and direction. Finally, utilizing the distance and movement data, the study calculates 

the "Transient Remaining Time," indicating the time until a cloud covers the Sun. They mentioned that this 

is the firstly implemented methodology offers a comprehensive approach to forecasting solar energy 

fluctuations by effectively analysing cloud movement dynamics and predicting their impact on solar 

irradiance [51]. A deep neural network which is based on the two stage R-CNN architecture has been 

trained for object detection and implemented by CloudSegNet and also has been compared with the U-net 

segmentation approach [52]. 
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As basic implementations ground based short term cloud coverage predictions also done by using Harris 

features detection and Lukas-kanade optical flow method for fin velocity vectors have been employed [53].  

5.3   Irradiance or PV Generation Forecasting Techniques 

To forecast the irradiance or PV generation, most of the research is done by using Long-Short Term 

Memory (LSTM) algorithm [54]. LSTM serves as a training model, with the weights utilized as inputs to 

estimate solar irradiance. The estimated solar irradiance, along with the solar power output, is then 

employed to construct the power curve, facilitating the estimation of solar power[39]. Also, hybrid models 

integrate both CNN and LSTM utilized [55]and algorithm like kernel learning methods, with the clear sky 

index serving as the response variable and cloud features as covariates [56]. 

6   OBJECT DETECTION AND TRACKING TECHNIQUES 

6.1   Object Detection Techniques 

Due to a smaller amount of research are gone through machine vision approach, I have gone through deep 

leaning based real time object detection techniques that can utilized for similar cases. 

In a review spanning 2004-2018, cloud detection methods in satellite imagery were explored. Techniques 

included shape analysis, colour transformation, density analysis, cloud shadow detection, comparison with 

clear-sky images, and feature extraction. These methods collectively enable scientists to uncover valuable 

insights from the concealed world beneath the clouds [57]. A study on cloud detection, The WDCD method 

uses a deep neural network to learn features autonomously from data, saving effort by requiring only block-

level cloud labels. By employing special techniques and comparing results to clear sky references, WDCD 

achieves precise cloud detection, outperforming traditional methods [58]. 

There are studies related to cloud cover detection by the above object detection, but recently there is a lack 

of research done on cloud cover detection-based object detection.  But in the study on 2023, cloud detection 

and tracking has been successfully done with object detection [51].  

So, gone through a review of trending object detection methods in the world which can use to detect and 

track cloud movements. Stacking convolutional layers in CNNs makes them excellent at capturing spatial 

features, which makes them perfect for identifying cloud patterns in satellite imagery. [59], [60]. Also, 

RNNs, designed to process data sequentially, offer potential advantages for analyzing temporal changes in 

oud cover. Despite this, standard RNNs encounter challenges with long-range dependencies, limiting their 

effectiveness in capturing complex temporal relationships within cloud data [61]. 

SSD, which Single Shot Multibox Detector, merges feature extraction from various image scales with 

streamlined prediction, striking a favourable balance between accuracy and speed. This technique enables 

efficient and accurate detection of objects, including cloud cover, within satellite imagery, making it 

suitable for real-time applications [62]. YOLO, is renowned for its ability to swiftly predict bounding boxes 

and object class probabilities simultaneously, facilitating rapid detection. Widely adopted in real-time 

applications such as drone imagery and video action recognition, YOLO excels in efficiently identifying 

objects, including cloud cover, within images and videos[63] [64]. These SSD and YOLO are CNN based 

deep leaning models for object detection technologies.Research on multi-object detection and tracking 

(MODT) method which is a combination of techniques. they first separate objects from the background 

using morphological operations and then, a grasshopper optimization algorithm fine-tunes a Kalman filter 

Figure 04. Solar PV Predictive Methods, Time Horizons vs Temporal Resolution 
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for accurate object tracking across video frames. Finally, a similar measure ensures consistent object 

identification in each frame. This is done for a video surveillance application [65]. The N-YOLO system 

divides video frames into smaller pieces, runs a fast object detector on each piece, and combines the results 

for real-time object detection and tracking on low-power devices [66].   

The use of deep learning for object detection and tracking is expanding quickly because of the ongoing 

development of powerful computing technology. Object tracking comes after object detection. 

Consequently, the accuracy of object detection across video frames is the primary determinant of tracking 

accuracy [67]. 

Based on the reviewed literature, it is evident that short-term and ultra-short-term solar power forecasting 

has evolved from conventional statistical models toward data-driven and vision-based approaches, driven 

primarily by the need to mitigate rapid power fluctuations and ramp-rate violations in high PV penetration 

grids. While numerical weather prediction and time-series models remain effective for longer horizons, 

their limitations in capturing fast irradiance transients restrict their suitability for real-time grid support. 

Recent studies demonstrate that integrating sky-imager data with deep learning architectures enables more 

accurate characterization of cloud dynamics and short-term irradiance variability. However, challenges 

persist in terms of real-time deployment, model generalization across locations, and computational 

efficiency. These gaps highlight the need for forecasting frameworks that balance prediction accuracy, 

response time, and implementation feasibility, particularly for islanded and weak grids such as those in Sri 

Lanka. 

7  DISCUSSION 

The reviewed studies indicate a clear shift in solar power forecasting research from traditional time-series 

and physical models toward data-driven and vision-based approaches. Statistical and machine learning 

methods have shown strong performance in short-term forecasting; however, their reliance on historical 

numerical data limits their responsiveness to sudden irradiance changes caused by cloud movement. Deep 

learning models, particularly convolutional and recurrent architectures, have improved prediction accuracy 

by capturing nonlinear relationships and temporal dependencies in solar data. 

Vision based forecasting using satellite images and total sky imagers has emerged as a promising solution 

for ultra short term prediction. Ground-based sky imagers provide high temporal and spatial resolution, 

making them suitable for forecasting within minutes. These methods enable direct observation of cloud 

motion and structure, which are critical factors in solar ramp events. Nevertheless, many existing studies 

focus on controlled experimental environments, and their performance under real time operational 

constraints remains insufficiently explored. 

Another key observation is the lack of consistency in input parameter selection and evaluation metrics 

across studies. While solar irradiance and cloud related features are widely used, the contribution of 

additional meteorological variables varies significantly by location. Furthermore, many approaches 

prioritize prediction accuracy without adequately addressing computational efficiency, latency, or 

scalability. These limitations restrict the practical deployment of advanced forecasting models for real-time 

grid control. 

Overall, the literature demonstrates strong methodological progress but also reveals a gap between 

algorithmic development and field-level implementation. Addressing this gap is essential for translating 
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forecasting accuracy into effective ramp-rate mitigation and grid stability enhancement. 

8  CONCLUSIONS 

This review examined short-term and ultra short term solar power forecasting techniques with a specific 

focus on mitigating photovoltaic power ramp rate fluctuations. Traditional physical and statistical models 

were found to be effective for longer forecasting horizons but insufficient for real-time grid support. 

Machine learning and deep learning approaches have improved forecasting performance by capturing 

omplex temporal patterns, yet their effectiveness depends heavily on data quality and model design. 

Vision-based methods using satellite imagery and total sky imagers demonstrate strong potential for real-

time forecasting due to their ability to directly capture cloud dynamics. Among these, ground-based sky 

imagers offer superior resolution for minute-level prediction, making them well suited for ramp-rate control 

applications. Despite these advantages, challenges remain in achieving reliable real-time deployment, 

ensuring model robustness across different climatic conditions, and balancing accuracy with computational 

efficiency. 

The review highlights the need for forecasting frameworks that integrate accurate cloud motion analysis 

with fast response prediction models. Such frameworks are particularly important for power systems with 

high solar penetration and limited flexibility, including islanded grids. The insights presented in this paper 

provide a structured basis for advancing solar forecasting research toward practical grid-support 

applications. 

9  FUTURE WORK 

Future research should focus on developing real-time forecasting systems that combine sky-imager data 

with lightweight deep learning models capable of operating under practical computational constraints. 

Greater attention is required to improve model generalization across different geographic locations and 

weather conditions, especially in tropical regions with high cloud variability. 

Further studies should also explore the integration of forecasting outputs with grid control strategies, 

such as dynamic ramp rate limiting and coordinated energy storage operation. Standardized evaluation 

metrics and benchmark datasets would support fair comparison of forecasting methods and accelerate 

practical adoption. Additionally, long-term field validation of vision-based forecasting systems in 

operational solar power plants is essential to assess reliability, scalability, and economic feasibility. 

Addressing these research directions will be critical for enabling stable and efficient integration of large-

scale solar power into future electricity grids. 
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