
 J. Res. Technol. Eng. 2 (3) , 2021, 94-105

94
JRTE©2021

PERFORMANCE COMPARISON OF ONOS AND ODL CONTROLLERS IN

SOFTWARE DEFINED NETWORKS UNDER DIFFERENT NETWORK TYPOLOGIES

*Maheshi B. Dissanayake1, A. L. V. Kumari1,2,3, and U.K.A. Udunuwara2

1 Dept. of Electrical and Electronic Engineering, Faculty of Engineering, University of Peradeniya, Sri Lanka.

2Sri Lanka Telecom PLC, Colombo.
3 Ceylon Electricity Board, Colombo.

*maheshid@eng.pdn.ac.lk

Received:24 June 2021; Revised: 04 July 2021; Accepted:06 July 2021; Available online: 10 July 2021

Abstract: A controller is a fundamental component of the Software-Defined Network (SDN) architecture that will

contribute to the success or failure of SDN. Although it can be implemented using different open source and

proprietary tools, selecting the best would eventually contribute to the success of implementation. Therefore, there

is a need to assess and compare other existing controllers for SDN in the market and research domains. In this

research, a comparative performance analysis between Open Network Operating System (ONOS) and Open Daylight

(ODL) open source SDN controllers is carried out by installing the latest stable version of ODL, ODL-Nitrogen and

ONOS, ONOS-Nightingale on a virtual test environment, Mininet. The initial packet latency, average round-trip time

and Transmission Control Protocol (TCP) bandwidth, i.e. throughput, are measured with respect to network

topology in Mininet emulator using ping and iperf commands. The experimental results show that in terms of latency

performance ONOS controller is more efficient compared to ODL controller, ODL controller has better flow-setup

latency performance than ONOS controller. Jitter variation indicates that ONOS controller is more consistent and

leads to more stable network connection and the iperf measured TCP bandwidth shows that ONOS Controller

processing power is better than ODL controller processing power. Overall analysis illustrates that ONOS is more

robust than ODL in our setup.

Keywords: Jitter, latency, network topologies, Open source SDN controllers, Software Defined Network (SDN),
throughput,

1 INTRODUCTION

Software-defined networking (SDN) architecture is developed with the expectation of providing

agility, flexibility, and virtualization of a communication network. SDN improves network control by

enabling enterprises and service providers to respond quickly to changing business requirements by

separating the control plane of the network. Understanding the performance of the control plane in

SDNs is crucial, as it acts as the “brain” of the network impacting the performance of the entire

network, applications, services, etc. Thus, understanding the behavior of the SDN controller will assist

the users and future developers to leverage this technology effectively.

Several studies have been conducted with the aim of comparing SDN controllers in the past couple of

years. Majority of them have conducted benchmarking study on some centralized controllers such as

Maestro [1], Beacon [2], Floodlight [3], Ryu [4], NOX [5] and POX [6]. These studies were carried

out to identify the baseline performance of controllers, and determine which controller outperforms

the others under certain test scenarios.

 J. Res. Technol. Eng. 2 (3) , 2021, 94-105

95
JRTE©2021

In a highly cited study, [7] evaluated the performance of Beacon, Maestro, and NOX. The study

conducted by [8] provides a set of requirements that are at the base of the comparison between the

controllers, and compares five controllers using a Multi-Criteria Decision Making (MCDM) method

named Analytic Hierarchy Process (AHP). Fernandez, M. J. in [9] focused on the operation modes for

OpenFlow controllers and evaluated the performance of Floodlight, NOX, POX, and Trema in both

reactive and proactive modes. Ref. [10] studied OpenFlow controller’s architecture in a customized

testbed and benchmarked Beacon, Floodlight, Maestro, and NOX controllers with different

performance metrics. A preliminary study of the Floodlight and Open-Daylight (ODL) controllers

using Cbench was conducted in [11]. Shalimov et. al in [12] conducted advanced research on SDN

with Controllers NOX, POX, Beacon, Floodlight, MUL, Maestro and Ryu using a tool named hcprobe.

In this study, the maximum throughput was demonstrated by Beacon. Furthermore, [13] presents a

performance study of centralized OpenFlow controllers, Beacon, Floodlight, IRIS, Libuid MSG,

Libuid RAW, Maestro, MUL, NOX, POX, and Ryu, and distributed OpenFlow controllers, Open

Network Operating System (ONOS) and ODL. The authors have used WCbench, for their evaluation.

In another performance study, [14] evaluated on the performance of Beacon, Floodlight, NOX, POX,

and Ryu.

 The controller efficiency is measured through different parameters such as performance,

scalability, reliability and security that characterize a controller. In this research, we evaluate only the

performance of the controllers. To the best of our knowledge, very few studies in the literature focus on

the performance evaluation of ONOS [15] and ODL [16], SDN controllers by taking active

measurements. Most of the prior works have considered prototyping a new controller, or evaluated

centralized OpenFlow controllers. ONOS and ODL have multiple releases and are mature enough in

their development phase. In [17], authors experimentally assessed the performances of ONOS and

ODL SDN controllers in terms of topology discovery and topology update. The comparison between

the two SDN controllers presented in [18], is neither extensive nor exhaustive. The authors focus

specifically on the controllers' path restoration and software reliability while not covering the many

other aspects that may interest an industrialist. The performance of the ODL and ONOS in terms of

burst rate, throughput, Round Trip Time (RTT) and bandwidth is studied in [19]. Yet, the research only

considers the tree topology and the experiment is design differs from the methodology adopted in this

manuscript. To better understand performance improvements (if any), it is important to re-evaluate new

releases of these controllers. We are hopeful that this study would add more depth to the performance

of ODL and ONOS SDN controls under different topological settings.

The rest of the paper is structured as follows. Section 2 briefly introduces the two popular open

source SDN controller ONOS and ODL. Then section 3 presents the methodology adopted in this

research, focusing on experimental setup and performance matrices used to access the performance of

the ONOS and ODL. Comparative results and in depth discussions are presented in Section 4. We

analyzed the performance of the two open source controllers under different networking topologies,

using initial packet latency, jitter, average round-trip time, and throughput. Finally, the conclusions are

drawn at section 5.

 J. Res. Technol. Eng. 2 (3) , 2021, 94-105

96
JRTE©2021

 2 ONOS AND ODL OVERVIEW

This section provides a brief overview to the two well known open source SDN controllers, ONOS and

ODL

2.1 ONOS

ONOS is written in Java and provides a distributed SDN applications platform atop Apache Karaf

OSGi (Open Services Gateway Initiative) container. The system offers REST API, CLI and an

extensible, dynamic web-based GUI. Applications (core extensions) can be loaded and unloaded

dynamically, via REST API or GUI, and without the need to restart the cluster or its individual nodes.

The ONOS architecture is with tiers of functionality, as outlined in [15] .

The top layer of ONOS architecture consists of business and network logic applications. The pivotal

layer in the ONOS architectural tier is the Distributed core, which allows physical separation of data

and control functions. This layer is also responsible for presenting a logically centralized view of the

network state and a logically centralized access to network control functions.

The core is separated from the other tiers via two logically distinct interface boundaries namely

Southbound API and Northbound API. Southbound API is the south-facing interface and it is a high-

level API through which the core interacts with the network environment. ONOS core relies on

protocol-specific adapters to conduct these interactions using the protocols of their choice, whether it is

OpenFlow, NETCONF, OVSDB, TL1 or even other available means, such as CLIs. Northbound API

conveys information about the network from the low-level topology abstractions, such as hosts, links

and devices, to higher-level abstractions, such as the network topology graph to application layer and

provide management interface for controlling lower layer components. ONOS interacts with the

underlying network through its Providers. Providers are ONOS applications based on OSGi

components. These applications can be dynamically enabled or disabled at run time. The primary

purpose of providers is to abstract the configuration, control, and management operations of a specific

family of devices (e.g. OpenFlow, NETCONF, etc.). Further, protocols used with ONOS, defines

implementation of all features needed by the controller to communicate with real devices, for

examples: OpenFlow, NETCONF, SNMP, etc.

2.2 ODL

ODL is an open source SDN controller platform implemented in Java, which can be deployed on any

operating system platform as a Java Virtual Machine (JVM). The key features of architecture of ODL

SDN Controller can be described as follows; Model-Driven Service Abstraction Layer (MD-SAL) is

the Kernel of the ODL which uses yet another Next Generation (YANG) as the modeling language.

The south-bound protocol of ODL is based on Open Service Gateway Initiative (OSGi) architecture.

OSGI is known as the Dynamic Module System for Java, and it defines a standard for modular

application development. ODL contains several components and projects, and consists of three layers.

The top layer contains business and network logic applications used by the controller to gather network

 J. Res. Technol. Eng. 2 (3) , 2021, 94-105

97
JRTE©2021

intelligence, run algorithms to control and monitor network behavior. The Base network service

functions, extensions, and platform services exist in controller platform. Controller provides an

abstraction which allows to developer to focus on the development of application functionality rather

than involving with writing device specific drivers. And the bottom layer consists of data plane

elements such as virtual switches, physical device interfaces. More detailed description on these

features can be found in [20]. ODL supports multiple protocols in southbound interface such as

OpenFlow 1.0, OpenFlow 1.3, BGP-LS, LISP, SNMP, etc. as ODL is created with an objective of

reducing vendor locking

3 METHODOLOGY

The test environment described in this section was set up on a single personal Computer (PC) with

Intel Core i5-4200M 2.50 GHz CPU with 2 cores, 4 logical processors, and 8 GB RAM using

virtualization technology. Oracle VirtualBox installed on the PC, was used to create virtual machines.

Fig.1. and Fig. 2. illustrate the test bed with virtualization. Two virtual machines were created in the

VirtualBox, and named ONOS-Ntg and ODL-Ny. 64-bit Ubuntu 18.04 desktop-amd64 operating

system was installed on both virtual machines. ONOS-Ntg machine was installed with ONOS-

Nightingale [20] controller and Mininet, whereas ODL-Ny was installed with ODL-Nitrogen [21]

controller and Mininet. Both virtual machines created with 4 GB RAM and 10 GB Storage.

Fig. 1. Testbed Setup

Fig. 2. Virtual Machine SDN Test Environment

 J. Res. Technol. Eng. 2 (3) , 2021, 94-105

98
JRTE©2021

3.1 Experimental method

Test configurations are arranged for standalone controller supporting reactive mode of flow setup. Fig.

3 depicts the common test setup for the standalone controller. Southbound Connection is a single

OpenFlow channel established between each OpenFlow switch and controller, since single controller

(standalone) manages a network. Given that a controller takes a considerable period of time to perform

tests for various types of traffic and packet sizes, we used traffic type IP with ICMP message of size 64

bytes to benchmark SDN controller performance. All experiments were carried out for both controllers

tested in two standalone test setups, and the performance metrics latency, ping delays, jitter, and

throughput of the networks were measured. At the setting up of the experiments, virtual traffic flow is

generated to load and unload the network topology tested, to facilitate performance measurements. In

the “unloaded network” test case, the only traffic presented in the network is 64 byte ICMP traffic. In

the “loaded network” test scenario, the network is loaded with two 64 Kilobyte ICMP traffic and the

network performance is measured using 64 byte ICMP traffic.

Fig. 3. Test setup for Standalone SDN controller in reactive mode of operation

3.2 Performance metrics with Topology Change

SDN controller is connected with the data plane emulated in Mininet with different network

topologies. Six different topologies were created using python application programming interface

(API) in Mininet. The topologies adopted, namely; Linear, Tree, Torus, Ring, Fat-tree and

datacenterHAFull are depicted in Fig. 4. Then three sets of ten ICMP requests (ping message) were

sent between the hosts which were logically apart from each other, and the results were recorded as in

Table 1.

Table 1. Topology details

Topology
No of nodes

No. of links
Switches Hosts Controller

Linear 16 16 1 31

Tree 15 16 1 30

Torus 16 16 1 48

Ring 16 16 1 32

Fat-tree 14 16 1 41

datacenterH

AFull
16 14 1 44

 J. Res. Technol. Eng. 2 (3) , 2021, 94-105

99
JRTE©2021

The very first ping delay was taken to compare the flow setup delay between two hosts which are

logically separated from each other in each topology. The last set of ten ICMP messages were taken, to

record Average Round Trip Time (ARTT) values and to calculate Jitter. The throughput is measured

by running the iperf command in Mininet command-line interface (CLI) console which return the TCP

bandwidth. All experiments run in two phases using the same network topology. In first phase the

ODL controller was connected to the data plane and in the second phase the ONOS controller was

connected to the data plane. At each run the performance metrics Latency, Jitter and Throughput were

measured.

(a) Linear Topology (b) Tree Topology

(c) Torus Topology (d) Ring Topology

(e) Fattree Topology (f) datacenterHAFull Topology

4 RESULTS AND DISCUSSION

4.1 Latency

Latency is the time required for a packet to arrive at its destination through the network. Latency can be

measured either using the time needed for a packet to reach its destination or the round-trip time. Ping

delay is employed to estimate on how close the platform is to real life implementation. There are two

important types of ping delays. They are the Initial Ping Delay (IPD) and the Average Ping Delay (APD).

The IPD is highly affected by the time it takes for the controller to add a flow table rule to the OF switch.

Fig. 4. Network Topologies tested in the research presented

 J. Res. Technol. Eng. 2 (3) , 2021, 94-105

JRTE©2021
100

The APD is defined as the average of all the ping delays excluding IPD. Using an SDN experimental

platform without initializing a controller is unrealistic and cannot be compared to real-life. On the other

hand, adding the huge IPD into the APD will result in a significant increase that will not reflect the entire

test as well as real-life implementation with pro-active controllers. Thus, in the analysis presented the ping

delay was split into IPD and APD, and the results of IPD taken at the very first ping in each topology was

analyzed.

4.1.1 Average Ping Delay (APD)

A single experimental round consisted of running the command ping ten times on a specific path in the

topology. The path used was the logically longest path (e.g. h1 to h16 in the case of the Linear and Torus

topologies and h1 to h8 in Ring Topology). Fig. 5. and Table 2., depict the average Round Trip Time

(RTT) of 10 pings in each network topology connected to ONOS and ODL .

Table 2. Average Round Trip Time -10 pings

Topology Controller ODL / ms ONOS / ms

Linear 0.455 0.265

Tree 0.155 0.151

Torus 0.349 0.115

Ring 0.255 0.186

Fat-tree 0.411 0.106

datacenterHAFull 0.436 0.114

Fig. 5. Average Round Trip Time -10 pings

According to Fig. 5., the ONOS controller’s average ping times are always slower than those of the ODL

controller. While this in general is by a large margin, in the case of the Tree topologies, the margin for the

average ping time is significantly small. This deduces, that packets sent under the ODL controller clearly

take far more time to travel in all topologies except in tree topology than the time taken under the ONOS

 J. Res. Technol. Eng. 2 (3) , 2021, 94-105

JRTE©2021
101

controller. ODL’s latency performance suggests it is not an efficient controller compared to ONOS

controller.

Close examination yields, that ONOS controller shows smaller RTT values with the topologies which have

more redundant links or multi paths, such as Fat-tree, datacenterHAFull. Hence, it is evident that ONOS

controller has a better algorithm to find the shortest path to the destination. In contrast, ODL controller

experienced larger RTT values with the topologies which have more redundant links or multi paths, like

Fat-tree, and datacenterHAFull. This large margin indicates the ODLs' capability to finding the shortest

path to destination is poor. Hence, ODL controller exhibits lower performance than the ONOS controller in

terms of RTT.

Both controllers have largest average RTT in Linear network topology as ping messages need to pass

through all (16 nos) OF switches to reach its destination (h16).

4.1.2 Initial Ping Delay (IPD)

Our results for the initial ping time are presented in Fig. 6. and Table 3. These results were obtained by

tracing the time taken for the very first ping sent, after Mininet was started with a topology-controller

combination, to complete the loop. The first ping is always higher than the next one because it is the first

time that a packet browses the network to discover the path. Hence, the initial ping delay gives an estimate

of how much time each controller algorithm needs as processing time, to understand the underlying

network topology.

Table 3. Initial ping Delay

Topology Controller ODL / ms
ONOS /

ms

Linear 5.95 413.00

Tree 2059.00 312.00

Torus 10.00 192.00

Ring 5.39 408.00

Fat-tree 2060.00 334.00

datacenterHAFull 4.72 199.00

Fig. 6. Initial Ping Delay

 J. Res. Technol. Eng. 2 (3) , 2021, 94-105

JRTE©2021
102

According to Fig. 6., majority of network topologies (4 out of 6) connected to ODL controller have low

initial ping delay but, surprisingly Tree and Fat-tree topologies connected to ODL controller shows very

large initial ping delay. There exists consistency in initial ping delays of topologies connected to ONOS

controller. Except for Tree and Fat-Tree topologies, the ODL controller has better flow-setup latency

performance than ONOS controller.

In essence, considering the APD and IPD results, the ONOS controller is more favorable to deploy in the

networks than ODL. This may be due to ONOS consisting of a complex series of subsystems, as well as

scalable functions, in contrast to ODL, which uses a model-view-control platform and operates off of a

strong central abstraction layer. Further, it should be noted that the ONOS processing power is greater than

the ODL processing power.

4.2 Jitter

Next a comparison between the jitter value of each controller is carried out to observe the performance of

ODL and ONOS. Jitter is the irregularity in latency on data packets flow over a network. Similar to the

latency test setting, in this test also the network topology was varied while keeping the number of switches

and hosts around 16 to keep all network topologies with equal network equipment which ease the

comparison of controller performance with respect to topology change. We have calculated the jitter using

10 ping messages obtained at the 3rd round of pinging. The process followed to calculate the jitter is

illustrated in Fig. 7. while Fig. 8. shows the jitter values of network topologies with each controller.

In ODL controller connected network topologies, jitter varies between 0.031 ms to 0.202 ms and in ONOS

controller connected network topologies, it varies between 0.028 ms to 0.069 ms. As seen in Fig. 8. the

jitter variation with respect to network topologies is significant in ODL controller compared to ONOS

controller, which indicates that ONOS controller is more consistent and lead to more stable network

connection.

Although majority of ONOS controller connected topologies show lower jitter, in Torus, Ring and

Hypercube topologies which contain loops, the jitter performance is better in ODL controller than ONOS

controller. Hence, from these test results, it can be deduced that ONOS controller is better than the ODL

controller in terms of jitter performance. The main reasons for this observations is that, although ODL and

ONOS both have hybrid commercial strategies, the ONOS subsystems has been developed focusing on the

telecoms, while ODL focused more on data centers. ONOS defines its services as a collection of sub

systems, for instance, the topology subsystem manages time-ordered snapshots of network graph views,

host subsystem manages the inventory of end-station hosts and their locations on the network etc. which

ease ONOS controller to find and send network traffic consistently than ODL.

 J. Res. Technol. Eng. 2 (3) , 2021, 94-105

JRTE©2021
103

Fig. 7. The procedure followed to calculate Jitter

Fig. 8. Comparison of Jitter for ODL and ONOS controllers under different network topologies

4.3 Throughput

Throughput determines the number of flow requests a controller can process per unit time. Similar to the

earlier test settings, the network topologies were varied while keeping the number of switches and hosts

closed to 16 to maintain same scale network which makes the comparison of controller performances

uniform with respect to topology change. Table 4. presents the average throughput results for ONOS and

ODL, respectively.

Send and Response Rate parameter was utilized to measure the throughput. The iperf bandwidth-testing

tool was run on Mininet console to obtain an estimate of network throughput for each topology-controller

combination, providing an alternate means of measuring the networks potential to send traffic quickly. This

command output two-element array of defined server and client speeds which are considered for the

measurement of Throughput.

As of Table 4. it can be observed that iperf measurement based TCP throughput of the ONOS connected

topologies are far higher than that of the ODL controller connected topologies. In the virtual test

 J. Res. Technol. Eng. 2 (3) , 2021, 94-105

JRTE©2021
104

environment, the TCP throughput measurement is solely dependent on the controller processing power.

This allows us to affirm, in terms of throughput, ONOS offers better performance. This is likely because of

its inherent support for very large scale networks.

Table 4. Throughput values for different network topologies

5 CONCLUSIONS

Understanding the performance of the control plane in software-defined networks is crucial, as it acts as the

“Brain" of the network impacting the performance of the entire network, applications, and services. In this

research, a comparative performance analysis of most popular open source SDN controllers, ONOS and

ODL is carried out by considering different network topologies. An impartial experimental analysis based

on active measurement was carried out for the selected Standalone reactive mode controllers by executing

ping and iperf commands in Mininet console. Our experiments indicate that the latest stable release of

ONOS, ONOS-Nightingale, outperforms ODL, ODL-Nitrogen, for throughput and latency with different

network topologies. In our test settings, the communications between the switches and the controller are

carried out through the loopback interface, and there is no delay while packets traverse the virtual ports as

compared to the hardware ports. Hence, it should be noted that, the latency and throughput values observed

in real implementations, may tend to be higher than the values presented in this study. In summary, ONOS

shows more robust performance than ODL in the tested scenario.

REFERENCES

[1] Cai Z. , Cox A. L. , and Ng T. S. E. . Maestro: “A System for Scalable OpenFlow Control”. Rice University, Tech. Rep.

2011.

[2] Erickson, D. “The Beacon OpenFlow controller”, HotSDN '13 Proceedings of the second ACM SIGCOMM workshop on

Hot topics in software defined networking. New York: ACM, pp. 13-18, 2013.

[3] Ryan Izard. (2013). “Project Floodlight. Big Switch Networks”, Accessed December 2017.

http://www.projectfloodlight.org/.

[4] NTT. (2013). Ryu Network Operating System, Retrieved from http://osrg.github.com/ryu

[5] Gude N. ,Koponen T. , Pettit J. , Pfaff B., Casado M. , McKeown N. , and Shenker S. “NOX: towards an operating system

for networks”, Computer Communication Review, 2008,

[6] McCauley, M. (2012). POX. http://www.noxrepo.org/.

 Controller

topologies

ODL Server

Throughput

/ Gbits/s

ONOS

Server

Throughput

/ Gbits/s

ODL Client

Throughput

/ Gbits/s

ONOS

Client

Throughput

/ Gbits/s

Linear 2.55 9.43 2.55 9.45

Tree 2.90 14.80 2.90 14.90

Torus 1.55 16.50 1.55 16.50

Ring 1.23 12.10 1.23 12.10

Fat-tree 2.19 14.60 2.20 14.60

datacenterHAFull 1.23 19.50 1.23 19.50

http://www.projectfloodlight.org/

 J. Res. Technol. Eng. 2 (3) , 2021, 94-105

JRTE©2021
105

[7] Tootoonchian A. , Gorbunov S., Ganjali Y.,Casado M. , and Sherwood R. “On Controller Performance in Software-Defined

Network”, 2nd USENIX Workshop on Hot Topics in Management of Internet, Cloud, and Enterprise Networks and

Services, 12, San Jose, California, pp. 1-6. 2012

[8] Khondoker R. , Zaalouk A., Marx R. and Bayarou K. . “Feature-based comparison and selection of Software Defined

Networking (SDN) controllers”, World Congress on Computer Applications and Information Systems (WCCAIS),

Hammamet, pp. 1-7, 2014.

[9] Fernandez, M. J. “Comparing OpenFlow Controller Paradigms Scalability: Reactive and Proactive”, 27th IEEE International

Conference on Advanced Information Networking and Applications (AINA), Barcelona, Spain, pp. 1009-1016, 2013

[10] Shah S., Faiz J., Farooq M., Sha A. and Mehdi S. “An Architectural Evaluation of SDN Controllers”, In Proceedings of the

IEEE International Conference on Communications (ICC), Budapest, Hungary, pp. 3504 - 3508, 2013.

[11] Khattak Z., Awais M. , and Iqbal A. “Performance Evaluation of OpenDaylight SDN Controller”, In Proceedings of the 20th

IEEE International Conference on Parallel and Distributed Systems (ICPADS), Hsinchu, Taiwan pp. 671-676, December

2014

[12] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky, “Advanced Study of SDN/OpenFlow Controllers”,

in 9th ACM Central \& Eastern European Software Engineering Conference, Moscow, Russia, October2013.

[13] Salman O. , Elhajj I. H. , Kayssi A., and Chehab A. “SDN Controllers: A Comparative Study”, 18th IEEE Mediterranean

Electrotechnical Conference (MELECON), Lemesos, Cyprus, pp. 1-6, 2016.

[14] Zhao Y. ,Iannone L., and Riguidel M. “On the Performance of SDN Controllers: A Reality Check”, In Proceedings of the

IEEE Conference on Network Function Virtualization and Software Defined Networks, San Francisco, California.pp. 79 -

85, 2015

[15] Berde P. , Gerola M. ,Hart J. , Higuchi Y., Kobayashi M. , Koide T., Lantz B. ,OӃonnor B. ,Radoslavov P. ,Snow W. , and

Parulkar G. “ONOS: Towards an open, distributed SDN OS” in Proceedings of the Third Workshop on Hot Topics in

Software Defined Networking, ser. HotSDN ұ4. New York: ACM, pp. 1-6, 2014.

[16] OpenDaylight, “OpenDaylight: A Linux Foundation Collaborative Project,” (2017). Retrieved from

http://www.opendaylight.org

[17] Bah. M. T., A. Azzouni, M. T. Nguyen and G. Pujolle, “Topology Discovery Performance Evaluation of OpenDaylight and

ONOS Controllers”, 22nd Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN), Paris,

France, 2019, pp. 285-291, 2019.

[18] Secci, S., Diamanti, A., Sanchez, J., Vilchez, M., Bah, M.T., Vizarreta, P., Machuca, C., Scott-Hayward,S. & Smith, D.,

“Security and Performance Comparison of ONOS and ODL controllers”, Information Report, Open Networking

Foundation, 2019.

[19] Badotra, S., and Panda, S.N. “Evaluation and comparison of OpenDayLight and open networking operating system in

software-defined networking.” Cluster Comput, 2019.

