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Abstract: A controller is a fundamental component of the Software-Defined Network (SDN) architecture that will 

contribute to the success or failure of SDN. Although it can be implemented using different open source and 

proprietary tools, selecting the best would eventually contribute to the success of implementation.   Therefore, there 

is a need to assess and compare other existing controllers for SDN in the market and research domains. In this 

research, a comparative performance analysis between Open Network Operating System (ONOS) and Open Daylight 

(ODL) open source SDN controllers is carried out by installing the latest stable version of ODL, ODL-Nitrogen and 

ONOS, ONOS-Nightingale on a virtual test environment, Mininet. The initial packet latency, average round-trip time 

and Transmission Control Protocol (TCP) bandwidth, i.e.  throughput, are measured with respect to network 

topology in Mininet emulator using ping and iperf commands. The experimental results show that in terms of latency 

performance ONOS controller is more efficient compared to ODL controller, ODL controller has better flow-setup 

latency performance than ONOS controller. Jitter variation indicates that ONOS controller is more consistent and 

leads to more stable network connection and the iperf measured TCP bandwidth shows that ONOS Controller 

processing power is better than ODL controller processing power. Overall analysis illustrates that ONOS is more 

robust than ODL in our setup. 

Keywords: Jitter,  latency, network topologies,  Open source SDN controllers, Software Defined Network (SDN), 
throughput,  

 

1 INTRODUCTION                                                                     

Software-defined networking (SDN) architecture is developed with the expectation of providing 

agility, flexibility, and virtualization of a communication network.  SDN improves network control by 

enabling enterprises and service providers to respond quickly to changing business requirements by 

separating the control plane of the network. Understanding the performance of the control plane in 

SDNs is crucial, as it acts as the “brain” of the network impacting the performance of the entire 

network, applications, services, etc. Thus, understanding the behavior of the SDN controller will assist 

the users and future developers to leverage this technology effectively. 

Several studies have been conducted with the aim of comparing SDN controllers in the past couple of 

years. Majority of them have conducted benchmarking study on some centralized controllers such as 

Maestro [1],  Beacon [2], Floodlight [3], Ryu [4], NOX [5] and POX [6]. These studies were carried 

out to   identify the baseline performance of controllers, and determine which controller outperforms 

the others under certain test scenarios.  
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In a highly cited study, [7] evaluated the performance of Beacon, Maestro, and NOX. The study 

conducted by [8] provides a set of requirements that are at the base of the comparison between the 

controllers, and compares five controllers using a Multi-Criteria Decision Making (MCDM) method 

named Analytic Hierarchy Process (AHP). Fernandez, M. J. in [9] focused on the operation modes for 

OpenFlow controllers and evaluated the performance of Floodlight, NOX, POX, and Trema in both 

reactive and proactive modes. Ref. [10] studied OpenFlow controller’s architecture in a customized 

testbed and benchmarked Beacon, Floodlight, Maestro, and NOX controllers with different 

performance metrics.  A preliminary study of the Floodlight and Open-Daylight (ODL) controllers 

using Cbench was conducted in [11].  Shalimov  et. al in [12] conducted advanced research on SDN 

with Controllers NOX, POX, Beacon, Floodlight, MUL, Maestro and Ryu using a tool named hcprobe. 

In this study, the maximum throughput was demonstrated by Beacon. Furthermore, [13] presents a 

performance study of centralized OpenFlow controllers, Beacon, Floodlight,  IRIS, Libuid MSG, 

Libuid RAW, Maestro, MUL, NOX, POX, and Ryu, and distributed  OpenFlow  controllers, Open 

Network Operating System (ONOS)  and ODL. The authors have used   WCbench, for their evaluation. 

In another performance study, [14] evaluated on the performance of Beacon, Floodlight, NOX, POX, 

and Ryu.  

 The controller efficiency is measured through different parameters such as performance, 

scalability, reliability and security that characterize a controller. In this research, we evaluate only the 

performance of the controllers. To the best of our knowledge, very few studies in the literature focus on 

the performance evaluation of ONOS [15] and ODL [16], SDN controllers by taking active 

measurements.   Most of the prior works have considered prototyping a new controller, or evaluated 

centralized OpenFlow controllers. ONOS and ODL have multiple releases and are mature enough in 

their development phase.  In [17], authors experimentally assessed the performances of ONOS and 

ODL SDN controllers in terms of topology discovery and topology update. The comparison between 

the two SDN controllers presented in [18], is neither extensive nor exhaustive. The authors focus 

specifically on the controllers' path restoration and software reliability while not covering the many 

other aspects that may interest an industrialist.  The performance of the ODL and ONOS in terms of 

burst rate, throughput, Round Trip Time (RTT) and bandwidth is studied in [19]. Yet, the research only 

considers the tree topology and the experiment is design differs from the methodology adopted in this 

manuscript. To better understand performance improvements (if any), it is important to re-evaluate new 

releases of these controllers. We are hopeful that this study would add more depth to the performance 

of ODL and ONOS SDN controls under different topological settings. 

The rest of the paper is structured as follows. Section 2 briefly introduces the two popular open 

source SDN controller ONOS and ODL. Then section 3 presents the methodology adopted in this 

research, focusing on experimental setup and performance matrices used to access the performance of 

the ONOS and ODL. Comparative results and in depth discussions are presented in Section 4. We 

analyzed the performance of the two open source controllers under different networking topologies, 

using initial packet latency, jitter, average round-trip time, and throughput. Finally, the conclusions are 

drawn at section 5. 
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 2  ONOS AND ODL OVERVIEW 

 
This section provides a brief overview to the two well known open source SDN controllers, ONOS and 

ODL 

 

2.1 ONOS 

 

ONOS is written in Java and provides a distributed SDN applications platform atop Apache Karaf 

OSGi (Open Services Gateway Initiative) container. The system offers REST API, CLI and an 

extensible, dynamic web-based GUI. Applications (core extensions) can be loaded and unloaded 

dynamically, via REST API or GUI, and without the need to restart the cluster or its individual nodes. 

The ONOS architecture is  with tiers of functionality, as outlined in [15] .   

The top layer of ONOS architecture consists of business and network logic applications. The pivotal 

layer in the ONOS architectural tier is the Distributed core, which allows physical separation of data 

and control functions. This layer is also responsible for presenting a logically centralized view of the 

network state and a logically centralized access to network control functions.  

The core is separated from the other tiers via two logically distinct interface boundaries namely 

Southbound API and Northbound API. Southbound API is the south-facing interface and it is a high-

level API through which the core interacts with the network environment. ONOS core relies on 

protocol-specific adapters to conduct these interactions using the protocols of their choice, whether it is 

OpenFlow, NETCONF, OVSDB, TL1 or even other available means, such as CLIs. Northbound API 

conveys information about the network from the low-level topology abstractions, such as hosts, links 

and devices, to higher-level abstractions, such as the network topology graph to application layer and 

provide management interface for controlling lower layer components. ONOS interacts with the 

underlying network through its Providers. Providers are ONOS applications based on OSGi 

components. These applications can be dynamically enabled or disabled at run time. The primary 

purpose of providers is to abstract the configuration, control, and management operations of a specific 

family of devices (e.g. OpenFlow, NETCONF, etc.). Further, protocols used with ONOS, defines 

implementation of all features needed by the controller to communicate with real devices, for 

examples: OpenFlow, NETCONF, SNMP, etc. 

 
2.2 ODL 

 

ODL is an open source SDN controller platform implemented in Java, which can be deployed on any 

operating system platform as a Java Virtual Machine (JVM). The key features of architecture of ODL 

SDN Controller can be described as follows; Model-Driven Service Abstraction Layer (MD-SAL) is 

the Kernel of the ODL which uses yet another Next Generation (YANG) as the modeling language. 

The south-bound protocol of ODL is based on Open Service Gateway Initiative (OSGi) architecture. 

OSGI is known as the Dynamic Module System for Java, and it defines a standard for modular 

application development. ODL contains several components and projects, and consists of three layers. 

The top layer contains business and network logic applications used by the controller to gather network 
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intelligence, run algorithms to control and monitor network behavior. The Base network service 

functions, extensions, and platform services exist in controller platform. Controller provides an 

abstraction which allows to developer to focus on the development of application functionality rather 

than involving with writing device specific drivers. And the bottom layer consists of data plane 

elements such as virtual switches, physical device interfaces. More detailed description on these 

features can be found in [20]. ODL supports multiple protocols in southbound interface such as 

OpenFlow 1.0, OpenFlow 1.3, BGP-LS, LISP, SNMP, etc. as ODL is created with an objective of 

reducing vendor locking 
  
3      METHODOLOGY 

The test environment described in this section was set up on a single personal Computer (PC) with 

Intel Core i5-4200M 2.50 GHz CPU with 2 cores, 4 logical processors, and 8 GB RAM using 

virtualization technology. Oracle VirtualBox installed on the PC, was used to create virtual machines. 

Fig.1.   and Fig. 2.  illustrate the test bed with virtualization. Two virtual machines were created in the 

VirtualBox, and named ONOS-Ntg and ODL-Ny. 64-bit Ubuntu 18.04 desktop-amd64 operating 

system was installed on both virtual machines. ONOS-Ntg machine was installed with ONOS-

Nightingale [20] controller and Mininet, whereas ODL-Ny was installed with ODL-Nitrogen [21] 

controller and Mininet. Both virtual machines created with 4 GB RAM and 10 GB Storage. 

 
 

 

Fig. 1. Testbed Setup 

 

 

 

Fig. 2. Virtual Machine SDN Test Environment 
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3.1  Experimental method 

Test configurations are arranged for standalone controller supporting reactive mode of flow setup. Fig. 

3 depicts the common test setup for the standalone controller. Southbound Connection is a single 

OpenFlow channel established between each OpenFlow switch and controller, since single controller 

(standalone) manages a network.  Given that a controller takes a considerable period of time to perform 

tests for various types of traffic and packet sizes, we used traffic type IP with ICMP message of size 64 

bytes to benchmark SDN controller performance. All experiments were carried out for both controllers 

tested in two standalone test setups, and the performance metrics latency, ping delays, jitter, and 

throughput of the networks were measured. At the setting up of the experiments, virtual traffic flow is 

generated to load and unload the network topology tested, to facilitate performance measurements. In 

the “unloaded network” test case, the only traffic presented in the network is 64 byte ICMP traffic. In 

the “loaded network” test scenario, the network is loaded with two 64 Kilobyte ICMP traffic and the 

network performance is measured using 64 byte ICMP traffic. 

 
Fig. 3. Test setup for Standalone SDN controller in reactive mode of operation 

3.2 Performance metrics with Topology Change 

SDN controller is connected with the data plane emulated in Mininet with different network 

topologies. Six different topologies were created using python application programming interface 

(API) in Mininet. The topologies adopted, namely; Linear, Tree, Torus, Ring, Fat-tree and 

datacenterHAFull are depicted in Fig. 4. Then three sets of ten ICMP requests (ping message) were 

sent between the hosts which were logically apart from each other, and the results were recorded as in 

Table 1. 

Table 1. Topology details 

 

Topology 
No of nodes 

No. of links 
Switches Hosts Controller 

Linear 16 16 1 31 

Tree 15 16 1 30 

Torus 16 16 1 48 

Ring 16 16 1 32 

Fat-tree 14 16 1 41 

datacenterH

AFull 
16 14 1 44 
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The very first ping delay was taken to compare the flow setup delay between two hosts which are 

logically separated from each other in each topology. The last set of ten ICMP messages were taken, to 

record Average Round Trip Time (ARTT) values and to calculate Jitter. The throughput is measured 

by running the iperf command in Mininet command-line interface (CLI) console which return the TCP 

bandwidth. All experiments run in two phases using the same network topology. In first phase the 

ODL controller was connected to the data plane and in the second phase the ONOS controller was 

connected to the data plane.  At each run the performance metrics Latency, Jitter and Throughput were 

measured.  

 

(a) Linear Topology (b)  Tree Topology 

(c)  Torus Topology (d) Ring Topology 

(e) Fattree Topology (f) datacenterHAFull Topology 

 
4      RESULTS AND DISCUSSION 
 

4.1 Latency 

Latency is the time required for a packet to arrive at its destination through the network. Latency can be 

measured either using the time needed for a packet to reach its destination or the round-trip time. Ping 

delay is employed to estimate on how close the platform is to real life implementation. There are two 

important types of ping delays. They are the Initial Ping Delay (IPD) and the Average Ping Delay (APD). 

The IPD is highly affected by the time it takes for the controller to add a flow table rule to the OF switch. 

Fig. 4. Network Topologies tested in the research presented
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The APD is defined as the average of all the ping delays excluding IPD. Using an SDN experimental 

platform without initializing a controller is unrealistic and cannot be compared to real-life. On the other 

hand, adding the huge IPD into the APD will result in a significant increase that will not reflect the entire 

test as well as real-life implementation with pro-active controllers. Thus, in the analysis presented the ping 

delay was split into IPD and APD, and the results of IPD taken at the very first ping in each topology was 

analyzed. 

 

4.1.1 Average Ping Delay (APD) 

A single experimental round consisted of running the command ping ten times on a specific path in the 

topology. The path used was the logically longest path (e.g. h1 to h16 in the case of the Linear and Torus 

topologies and h1 to h8 in Ring Topology). Fig. 5. and Table 2., depict the average Round Trip Time 

(RTT) of 10 pings in each network topology connected to ONOS and ODL . 

Table 2. Average Round Trip Time -10 pings 

Topology               Controller ODL / ms ONOS / ms 

Linear 0.455 0.265 

Tree 0.155 0.151 

Torus 0.349 0.115 

Ring 0.255 0.186 

Fat-tree 0.411 0.106 

datacenterHAFull 0.436 0.114 

 

 

 

 

Fig. 5.  Average Round Trip Time -10 pings 

According to Fig. 5., the ONOS controller’s average ping times are always slower than those of the ODL 

controller.  While this in general is by a large margin, in the case of the  Tree topologies, the margin for the 

average ping time is significantly small.  This deduces, that packets sent under the ODL controller clearly 

take far more time to travel in all topologies except in tree topology than the time taken under the ONOS 
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controller. ODL’s latency performance suggests it is not an efficient controller compared to ONOS 

controller.  

Close examination yields, that ONOS controller shows smaller RTT values with the topologies which have 

more redundant links or multi paths, such as Fat-tree, datacenterHAFull. Hence, it is evident that ONOS 

controller has a better algorithm to find the shortest path to the destination. In contrast, ODL controller 

experienced larger RTT values with the topologies which have more redundant links or multi paths, like 

Fat-tree, and datacenterHAFull. This large margin indicates the ODLs' capability to finding the shortest 

path to destination is poor. Hence, ODL controller exhibits lower performance than the ONOS controller in 

terms of RTT.  

Both controllers have largest average RTT in Linear network topology as ping messages need to pass 

through all (16 nos) OF switches to reach its destination (h16). 

 

4.1.2 Initial Ping Delay (IPD) 

Our results for the initial ping time are presented in Fig. 6. and Table 3. These results were obtained by 

tracing the time taken for the very first ping sent, after Mininet was started with a topology-controller 

combination, to complete the loop. The first ping is always higher than the next one because it is the first 

time that a packet browses the network to discover the path. Hence, the initial ping delay gives an estimate 

of how much time each controller algorithm needs as processing time, to understand the underlying 

network topology. 

Table 3. Initial ping Delay 

Topology                         Controller ODL / ms 
ONOS / 

ms 

Linear 5.95 413.00 

Tree 2059.00 312.00 

Torus 10.00 192.00 

Ring 5.39 408.00 

Fat-tree 2060.00 334.00 

datacenterHAFull 4.72 199.00 

 

 

Fig. 6.  Initial Ping Delay 
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According to Fig. 6., majority of network topologies (4 out of 6) connected to ODL controller have low 

initial ping delay but, surprisingly Tree and Fat-tree topologies connected to ODL controller shows very 

large initial ping delay.  There exists consistency in initial ping delays of topologies connected to ONOS 

controller. Except for Tree and Fat-Tree topologies, the ODL controller has better flow-setup latency 

performance than ONOS controller. 

In essence, considering the APD and IPD results, the ONOS controller is more favorable to deploy in the 

networks than ODL. This may be due to ONOS consisting of a complex series of subsystems, as well as 

scalable functions, in contrast to ODL, which uses a model-view-control platform and operates off of a 

strong central abstraction layer. Further, it should be noted that the ONOS processing power is greater than 

the ODL processing power. 

 

4.2 Jitter 

Next a comparison between the jitter value of each controller is carried out to observe the performance of 

ODL and ONOS. Jitter is the irregularity in latency on data packets flow over a network. Similar to the 

latency test setting, in this test also the network topology was varied while keeping the number of switches 

and hosts around 16 to keep all network topologies with equal network equipment which ease the 

comparison of controller performance with respect to topology change. We have calculated the jitter using 

10 ping messages obtained at the 3rd round of pinging. The process followed to calculate the jitter is 

illustrated in Fig. 7. while Fig. 8.  shows the jitter values of network topologies with each controller. 

In ODL controller connected network topologies, jitter varies between 0.031 ms to 0.202 ms and in ONOS 

controller connected network topologies, it varies between 0.028 ms to 0.069 ms. As seen in Fig. 8. the 

jitter variation with respect to network topologies is significant in ODL controller compared to ONOS 

controller, which indicates that ONOS controller is more consistent and lead to more stable network 

connection.  

Although majority of ONOS controller connected topologies show lower jitter, in Torus, Ring and 

Hypercube topologies which contain loops, the jitter performance is better in ODL controller than ONOS 

controller. Hence, from these test results, it can be deduced that ONOS controller is better than the ODL 

controller in terms of jitter performance. The main reasons for this observations is that, although ODL and 

ONOS both have hybrid commercial strategies, the ONOS subsystems has been developed focusing on the 

telecoms, while ODL  focused more on data centers. ONOS defines its services as a collection of sub 

systems, for instance, the topology subsystem manages time-ordered snapshots of network graph views, 

host subsystem manages the inventory of end-station hosts and their locations on the network etc. which 

ease ONOS controller to find and send network traffic consistently than ODL. 
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Fig. 7.  The procedure followed to calculate Jitter 

 

Fig. 8. Comparison of Jitter for ODL and ONOS controllers under different network topologies 

4.3 Throughput 

Throughput determines the number of flow requests a controller can process per unit time. Similar to the 

earlier test settings, the network topologies were varied while keeping the number of switches and hosts 

closed to 16 to maintain same scale network which makes the comparison of controller performances 

uniform with respect to topology change. Table 4. presents the average throughput results for ONOS and 

ODL, respectively. 

Send and Response Rate parameter was utilized to measure the throughput. The iperf bandwidth-testing 

tool was run on Mininet console to obtain an estimate of network throughput for each topology-controller 

combination, providing an alternate means of measuring the networks potential to send traffic quickly. This 

command output two-element array of defined server and client speeds which are considered for the 

measurement of Throughput. 

As of Table 4. it can be observed that iperf measurement based TCP throughput of the ONOS connected 

topologies are far higher than that of the ODL controller connected topologies. In the virtual test 
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environment, the TCP throughput measurement is solely dependent on the controller processing power. 

This allows us to affirm, in terms of throughput, ONOS offers better performance. This is likely because of 

its inherent support for very large scale networks. 

Table 4. Throughput values for different network topologies  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
5      CONCLUSIONS 

Understanding the performance of the control plane in software-defined networks is crucial, as it acts as the 

“Brain" of the network impacting the performance of the entire network, applications, and services. In this 

research, a comparative performance analysis of most popular open source SDN controllers, ONOS and 

ODL is carried out by considering different network topologies. An impartial experimental analysis based 

on active measurement was carried out for the selected Standalone reactive mode controllers by executing 

ping and iperf commands in Mininet console.   Our experiments indicate that the latest stable release of 

ONOS, ONOS-Nightingale, outperforms ODL, ODL-Nitrogen, for throughput and latency with different 

network topologies. In our test settings, the communications between the switches and the controller are 

carried out through the loopback interface, and there is no delay while packets traverse the virtual ports as 

compared to the hardware ports. Hence, it should be noted that, the latency and throughput values observed 

in real implementations, may tend to be higher than the values presented in this study. In summary, ONOS 

shows more robust performance than ODL in the tested scenario. 
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